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The hypothesis testing framework
�  Start with two hypotheses about the population: the null hypothesis and the
alternative hypothesis.

�  Choose a (representative) sample, collect data, and analyze the data.

�  Figure out how likely it is to see data like what we observed, IF the null
hypothesis were in fact true (called a p-value)

�  If our data would have been extremely unlikely if the null hypothesis were true,
then we reject it in favor of the alternative hypothesis.

Otherwise, we cannot reject the null hypothesis
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What can go wrong?
Suppose we test a certain null hypothesis, which can be either true or false (we
never know for sure!). We make one of two decisions given our data: either reject
or fail to reject .
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What can go wrong?
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 is the probability of making a Type I error.

 is the probability of making a Type II error.

The power of a test is 1 - : the probability that, if the null hypothesis is
actually false, we correctly reject it.
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What can go wrong?
Decision  is true  is false

Fail to reject Correct decision Type II Error

Reject Type I Error Correct decision

 is the probability of making a Type I error.

 is the probability of making a Type II error.

The power of a test is 1 - : the probability that, if the null hypothesis is
actually false, we correctly reject it.

Though we'd like to know if we're making a correct decision or making a Type I or
Type II error, hypothesis testing does NOT give us the tools to determine this.
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Equivalency of confidence and significance
levels

Two sided alternative hypothesis test with   

One sided alternative hypothesis with   
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Back to Asheville!

Your friend claims that the mean price per guest per night for Airbnbs in Asheville
is $100. What do you make of this statement?

Let's use hypothesis testing to assess this claim!
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Remember, the null and alternative hypotheses are defined for parameters, not
statistics

What will our null and alternative hypotheses be for this example?
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�  Defining the hypotheses
Remember, the null and alternative hypotheses are defined for parameters, not
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�  Collecting and summarizing data
With these two hypotheses, we now take our sample and summarize the data.
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�  Collecting and summarizing data
With these two hypotheses, we now take our sample and summarize the data.

The choice of summary statistic calculated depends on the type of data. In our
example, we use the sample mean: :

asheville <- read_csv("data/asheville.csv")

asheville %>% 
  summarize(mean_price = mean(ppg))

## # A tibble: 1 x 1
##   mean_price
##        <dbl>
## 1       76.6

datasciencebox.org

= 76.6x̄

10

�  Assessing the evidence
Next, we calculate the probability of getting data like ours, or more extreme, if 
were in fact actually true.

This is a conditional probability:

Given that  is true (i.e., if  were actually 100), what would be the
probability of observing  or more extreme?

This probability is known as the p-value.
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Simulating the null distribution
Let's return to the Asheville data. We know that our sample mean was 76.6, but
we also know that if we were to take another random sample of size 50 from all
Airbnb listings, we might get a different sample mean.
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Bootstrap distribution of the mean
set.seed(12345)
library(infer)

boot_means <- asheville %>% 
  specify(response = ppg) %>%
  generate(reps = 5000, type =  "bootstrap") %>%
  calculate(stat = "mean")

ggplot(data = boot_means, aes(stat)) +
  geom_histogram(binwidth = 2, color = "darkblue", fill = "skyblue") +
  labs(x = "Price per night", y = "Count") +
  geom_vline(xintercept = mean(boot_means$stat), 
             lwd = 2, color = "red")
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Bootstrap distribution of the mean
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boot_means %>% 
  summarize(mean(stat))

## # A tibble: 1 x 1
##   `mean(stat)`
##          <dbl>
## 1         76.6

Remember,

Shifting the distribution
We've captured the variability in the sample mean among samples of size 50 from
Asheville area Airbnbs, but remember that in the hypothesis testing paradigm, we
must assess our observed evidence under the assumption that the null
hypothesis is true.
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Where should the bootstrap distribution of means be centered if in fact 
were actually true?
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Shifting the distribution
ash_boot_mean <- boot_means %>% 
  summarize(mean = mean(stat)) %>% 
  pull()

boot_means <- boot_means %>%
  mutate(null_dist_stat = stat - (ash_boot_mean - 100))

If we shifted the bootstrap distribution by offset, then it will be centered at :
the null-hypothesized value for the mean.

ggplot(data = boot_means, aes(x = null_dist_stat)) +
  geom_histogram(binwidth = 2, color = "darkblue", fill = "skyblue") +
  labs(x = "Price per night", y = "Count") +
    geom_vline(xintercept = mean(boot_means$null_dist_stat), lwd = 2, 
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Distribution of  under 
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null_dist

## # A tibble: 5,000 x 2
##    replicate  stat
##        <int> <dbl>
##  1         1 104. 
##  2         2 112. 
##  3         3  92.7
##  4         4 102. 
##  5         5  93.8

null_dist %>%
  summarise(mean = mean(stat))

## # A tibble: 1 x 1
##    mean
##   <dbl>
## 1  100.

Simulating the null distribution with infer
null_dist <- asheville %>%
  specify(response = ppg) %>%
  hypothesize(null = "point", mu = 100) %>%
  generate(reps = 5000, type = "bootstrap") %>%
  calculate(stat = "mean")
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�  Assessing the evidence
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�  Assessing the evidence
null_dist %>%
  filter(stat <= 76.6 | stat >= (100 + (100 - 76.6))) %>%
  summarise(p_value = n()/nrow(null_dist))

## # A tibble: 1 x 1
##   p_value
##     <dbl>
## 1  0.0008
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�  Make conclusion
What might we conclude at the  = 0.05 level?

The p-value, 0.0008 is less than 0.05, so we reject (H_0). The data provide
sufficient evidence that the mean price per guest per night for Airbnbs in
Asheville is not equal to $100.
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Discussion questions
 here was a two-sided hypothesis . How does this compare

to the one-sided hypothesis from last time ?
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Discussion questions
 here was a two-sided hypothesis . How does this compare

to the one-sided hypothesis from last time ?

How might the p-value change depending on what type of alternative
hypothesis is specified?

Why did we need to "shift" the bootstrap distribution when we generated the
null distribution in this example, but we didn't need shift the distribution last
time when we generated the null distribution for inference on the population
proportion?

datasciencebox.org

Ha ( : μ ≠ 100)Ha

( : p < 0.1)Ha

24

Simulation-based testing

Part 2

Prof. Maria Tackett
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�  Assessing the evidence
Next, we calculate the probability of getting data like ours, or more extreme, if 
were in fact actually true.

This is a conditional probability:

Given that  is true (i.e., if  were actually 100), what would be the
probability of observing  or more extreme?

This probability is known as the p-value.
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Simulating the null distribution
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we also know that if we were to take another random sample of size 50 from all
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Bootstrap distribution of the mean
set.seed(12345)
library(infer)

boot_means <- asheville %>% 
  specify(response = ppg) %>%
  generate(reps = 5000, type =  "bootstrap") %>%
  calculate(stat = "mean")

ggplot(data = boot_means, aes(stat)) +
  geom_histogram(binwidth = 2, color = "darkblue", fill = "skyblue") +
  labs(x = "Price per night", y = "Count") +
  geom_vline(xintercept = mean(boot_means$stat), 
             lwd = 2, color = "red")
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boot_means %>% 
  summarize(mean(stat))

## # A tibble: 1 x 1
##   `mean(stat)`
##          <dbl>
## 1         76.6

Remember,

Shifting the distribution
We've captured the variability in the sample mean among samples of size 50 from
Asheville area Airbnbs, but remember that in the hypothesis testing paradigm, we
must assess our observed evidence under the assumption that the null
hypothesis is true.
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Where should the bootstrap distribution of means be centered if in fact 
were actually true?
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Shifting the distribution
ash_boot_mean <- boot_means %>% 
  summarize(mean = mean(stat)) %>% 
  pull()

boot_means <- boot_means %>%
  mutate(null_dist_stat = stat - (ash_boot_mean - 100))

If we shifted the bootstrap distribution by offset, then it will be centered at :
the null-hypothesized value for the mean.

ggplot(data = boot_means, aes(x = null_dist_stat)) +
  geom_histogram(binwidth = 2, color = "darkblue", fill = "skyblue") +
  labs(x = "Price per night", y = "Count") +
    geom_vline(xintercept = mean(boot_means$null_dist_stat), lwd = 2, 
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null_dist

## # A tibble: 5,000 x 2
##    replicate  stat
##        <int> <dbl>
##  1         1 104. 
##  2         2 112. 
##  3         3  92.7
##  4         4 102. 
##  5         5  93.8

null_dist %>%
  summarise(mean = mean(stat))

## # A tibble: 1 x 1
##    mean
##   <dbl>
## 1  100.

Simulating the null distribution with infer
null_dist <- asheville %>%
  specify(response = ppg) %>%
  hypothesize(null = "point", mu = 100) %>%
  generate(reps = 5000, type = "bootstrap") %>%
  calculate(stat = "mean")
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�  Assessing the evidence
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�  Assessing the evidence
null_dist %>%
  filter(stat <= 76.6 | stat >= (100 + (100 - 76.6))) %>%
  summarise(p_value = n()/nrow(null_dist))

## # A tibble: 1 x 1
##   p_value
##     <dbl>
## 1  0.0008
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�  Make conclusion
What might we conclude at the  = 0.05 level?

The p-value, 0.0008 is less than 0.05, so we reject (H_0). The data provide
sufficient evidence that the mean price per guest per night for Airbnbs in
Asheville is not equal to $100.
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Discussion questions
 here was a two-sided hypothesis . How does this compare

to the one-sided hypothesis from last time ?
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 here was a two-sided hypothesis . How does this compare

to the one-sided hypothesis from last time ?

How might the p-value change depending on what type of alternative
hypothesis is specified?
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Discussion questions
 here was a two-sided hypothesis . How does this compare

to the one-sided hypothesis from last time ?

How might the p-value change depending on what type of alternative
hypothesis is specified?

Why did we need to "shift" the bootstrap distribution when we generated the
null distribution in this example, but we didn't need shift the distribution last
time when we generated the null distribution for inference on the population
proportion?
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