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Vocabulary
Response variable: Variable whose behavior or variation you are trying to
understand.

Explanatory variables: Other variables that you want to use to explain the
variation in the response.

Predicted value: Output of the model function

The model function gives the typical value of the response variable
conditioning on the explanatory variables.

Residuals: Shows how far each case is from its predicted value

Residual = Observed value - Predicted value
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The linear model with a single predictor
We're interested in the  (population parameter for the intercept) and the 
(population parameter for the slope) in the following model:

β0 β1

= +  xy ̂  β0 β1
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The linear model with a single predictor
We're interested in the  (population parameter for the intercept) and the 
(population parameter for the slope) in the following model:

Unfortunately, we can't get these values

So we use sample statistics to estimate them:

β0 β1

= +  xy ̂  β0 β1

= +  xy ̂  b0 b1
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Least squares regression
The regression line minimizes the sum of squared residuals.

Residuals: ,

The regression line minimizes .

Equivalently, minimizing 

= −ei yi y ̂ i

∑n
i=1

e2i

[ − ( +   )∑n
i=1

yi b0 b1 xi ]2
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Data and Packages
library(tidyverse)
library(broom)

paris_paintings <- read_csv("data/paris_paintings.csv", 
               na = c("n/a", "", "NA"))

Paris Paintings Codebook

Source: Printed catalogues from 28 auction sales held in Paris 1764 - 1780

3,393 paintings, prices, descriptive details, characteristics of the auction and
buyer (over 60 variables)
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Single numerical predictor
m_ht_wd <- lm(Height_in ~ Width_in, data = paris_paintings)
tidy(m_ht_wd)

## # A tibble: 2 x 5
##   term        estimate std.error statistic  p.value
##   <chr>          <dbl>     <dbl>     <dbl>    <dbl>
## 1 (Intercept)    3.62    0.254        14.3 8.82e-45
## 2 Width_in       0.781   0.00950      82.1 0.

= 3.62 + 0.78 WidtHeightinˆ hin
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Single categorical predictor (2 levels)

## # A tibble: 2 x 5
##   term              estimate std.error statistic  p.value
##   <chr>                <dbl>     <dbl>     <dbl>    <dbl>
## 1 (Intercept)          22.7      0.328      69.1 0.      
## 2 factor(landsALL)1    -5.65     0.532     -10.6 7.97e-26

m_ht_lands <- lm(Height_in ~ factor(landsALL), data = paris_paintings)
tidy(m_ht_lands)

= 22.68 − 5.65 landsALLHeightinˆ
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Single categorical predictor (> 2 levels)
m_ht_sch <- lm(Height_in ~ school_pntg, data = paris_paintings)
tidy(m_ht_sch)

## # A tibble: 7 x 5
##   term            estimate std.error statistic p.value
##   <chr>              <dbl>     <dbl>     <dbl>   <dbl>
## 1 (Intercept)        14.        10.0     1.40  0.162  
## 2 school_pntgD/FL     2.33      10.0     0.232 0.816  
## 3 school_pntgF       10.2       10.0     1.02  0.309  
## 4 school_pntgG        1.65      11.9     0.139 0.889  
## 5 school_pntgI       10.3       10.0     1.02  0.306  
## 6 school_pntgS       30.4       11.4     2.68  0.00744
## 7 school_pntgX        2.87      10.3     0.279 0.780

= 14 + 2.33 sc + 10.2 sc +Heightinˆ hD/FL hF

1.65 sc + 10.3 sc + 30.4 sc + 2.87 schG hI hS hX
10

The linear model with multiple predictors
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The linear model with multiple predictors
Population model:

= +   +   + ⋯ +  y ̂  β0 β1 x1 β2 x2 βk xk
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The linear model with multiple predictors
Population model:

Sample model that we use to estimate the population model:

= +   +   + ⋯ +  y ̂  β0 β1 x1 β2 x2 βk xk

= +   +   + ⋯ +  y ̂  b0 b1 x1 b2 x2 bk xk
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Data
The data set contains prices for Porsche and Jaguar cars for sale on cars.com.

car: car make (Jaguar or Porsche)

price: price in USD

age: age of the car in years

mileage: previous miles driven
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Price, age, and make

14

Price vs. age and make

Does the relationship between age and price depend on the make of the car?
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Modeling with main effects
m_main <- lm(price ~ age + car, data = sports_car_prices)

m_main %>%
  tidy() %>%
  select(term, estimate)

## # A tibble: 3 x 2
##   term        estimate
##   <chr>          <dbl>
## 1 (Intercept)   44310.
## 2 age           -2487.
## 3 carPorsche    21648.
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= 65958 − 2487 age
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Jaguar

Porsche

Rate of change in price as the age of the car increases does not depend on
make of car (same slopes)

Porsches are consistently more expensive than Jaguars (different intercepts)

priceˆ = 44310 − 2487 age + 21648 × 0

= 44310 − 2487 age

priceˆ = 44310 − 2487 age + 21648 × 1

= 65958 − 2487 age
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Interpretation of main effects
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Main effects
## # A tibble: 3 x 2
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Main effects
## # A tibble: 3 x 2
##   term        estimate
##   <chr>          <dbl>
## 1 (Intercept)   44310.
## 2 age           -2487.
## 3 carPorsche    21648.

All else held constant, for each additional year of a car's age, the price of the
car is predicted to decrease, on average, by $2,487.

All else held constant, Porsches are predicted, on average, to have a price that
is $21,647 greater than Jaguars.

Jaguars that are new (age = 0) are predicted, on average, to have a price of
$44,309.
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Why is our linear regression model different from what we got from
geom_smooth(method = "lm")?
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What went wrong?
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What went wrong?
car is the only variable in our model that affects the intercept.

The model we specified assumes Jaguars and Porsches have the same slope
and different intercepts.

What is the most appropriate model for these data?

same slope and intercept for Jaguars and Porsches?

same slope and different intercept for Jaguars and Porsches?

different slope and different intercept for Jaguars and Porsches?
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Interacting explanatory variables
Including an interaction effect in the model allows for different slopes, i.e.
nonparallel lines.

This means that the relationship between an explanatory variable and the
response depends on another explanatory variable.

We can accomplish this by adding an interaction variable. This is the product
of two explanatory variables.
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Price vs. age and car interacting
ggplot(data = sports_car_prices,
       mapping = aes(y = price, x = age, color = car)) +
  geom_point() + 
  geom_smooth(method = "lm", se = FALSE) +
  labs(x = "Age (years)", y = "Price (USD)", color = "Car Make")
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Modeling with interaction effects
m_int <- lm(price ~ age + car + age * car, data = sports_car_prices) 
m_int %>%
  tidy() %>%
  select(term, estimate)

## # A tibble: 4 x 2
##   term           estimate
##   <chr>             <dbl>
## 1 (Intercept)      56988.
## 2 age              -5040.
## 3 carPorsche        6387.
## 4 age:carPorsche    2969.

= 56988 − 5040 age + 6387 carPorsche + 2969 age × carPorschepriceˆ

25

Interpretation of interaction effects

= 56988 − 5040 age + 6387 carPorsche + 2969 age × carPorschepriceˆ
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Interpretation of interaction effects

Plug in 0 for carPorsche to get the linear model for Jaguars.

= 56988 − 5040 age + 6387 carPorsche + 2969 age × carPorschepriceˆ

priceˆ = 56988 − 5040 age + 6387 carPorsche + 2969 age × carPorsche

= 56988 − 5040 age + 6387 × 0 + 2969 age × 0

= 56988 − 5040 age
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Interpretation of interaction effects

Plug in 0 for carPorsche to get the linear model for Jaguars.

Plug in 1 for carPorsche to get the linear model for Porsches.

= 56988 − 5040 age + 6387 carPorsche + 2969 age × carPorschepriceˆ

priceˆ = 56988 − 5040 age + 6387 carPorsche + 2969 age × carPorsche

= 56988 − 5040 age + 6387 × 0 + 2969 age × 0

= 56988 − 5040 age

priceˆ = 56988 − 5040 age + 6387 carPorsche + 2969 age × carPorsche

= 56988 − 5040 age + 6387 × 1 + 2969 age × 1

= 63375 − 2071 age
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Interpretation of interaction effects

Jaguar

Porsche

Rate of change in price as the age of the car increases depends on the make of
the car (different slopes).

Porsches are consistently more expensive than Jaguars (different intercepts).

= 56988 − 5040 agepriceˆ

= 63375 − 2071 agepriceˆ
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= 56988 − 5040 age + 6387 carPorsche + 2969 age × carPorschepriceˆ
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Continuous by continuous interactions
Interpretation becomes trickier

Slopes conditional on values of explanatory variables
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Continuous by continuous interactions
Interpretation becomes trickier

Slopes conditional on values of explanatory variables

Third order interactions
Can you? Yes

Should you? Probably not if you want to interpret these interactions in context
of the data.
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Assessing quality of model fit
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Assessing the quality of the fit
The strength of the fit of a linear model is commonly evaluated using .

It tells us what percentage of the variability in the response variable is
explained by the model. The remainder of the variability is unexplained.

 is sometimes called the coefficient of determination.

What does "explained variability in the response variable" mean?

R2

R2
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Obtaining  in R
price vs. age and make

glance(m_main)

## # A tibble: 1 x 12
##   r.squared adj.r.squared  sigma statistic  p.value    df logLik   AIC   BI
##       <dbl>         <dbl>  <dbl>     <dbl>    <dbl> <dbl>  <dbl> <dbl> <dbl
## 1     0.607         0.593 11848.      44.0 2.73e-12     2  -646. 1301. 1309
## # … with 3 more variables: deviance <dbl>, df.residual <int>, nobs <int>

glance(m_main)$r.squared

## [1] 0.6071375

R
2
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Obtaining  in R
price vs. age and make

glance(m_main)

## # A tibble: 1 x 12
##   r.squared adj.r.squared  sigma statistic  p.value    df logLik   AIC   BI
##       <dbl>         <dbl>  <dbl>     <dbl>    <dbl> <dbl>  <dbl> <dbl> <dbl
## 1     0.607         0.593 11848.      44.0 2.73e-12     2  -646. 1301. 1309
## # … with 3 more variables: deviance <dbl>, df.residual <int>, nobs <int>

glance(m_main)$r.squared

## [1] 0.6071375

About 60.7% of the variability in price of used cars can be explained by age and
make.

R
2
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glance(m_main)$r.squared #model with main effects

## [1] 0.6071375

glance(m_int)$r.squared #model with main effects + interactions

## [1] 0.6677881

R
2
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glance(m_main)$r.squared #model with main effects

## [1] 0.6071375

glance(m_int)$r.squared #model with main effects + interactions

## [1] 0.6677881

The model with interactions has a higher .

R
2

R2
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glance(m_main)$r.squared #model with main effects

## [1] 0.6071375

glance(m_int)$r.squared #model with main effects + interactions

## [1] 0.6677881

The model with interactions has a higher .

Using  for model selection in models with multiple explanatory variables is
not a good idea as  increases when any variable is added to the model.

R
2

R2

R2

R2
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 - first principles
We can write explained variation using the following ratio of sums of squares:

Why does this expression make sense?

But remember, adding any explanatory variable will always increase 

R
2

= 1 − ( )R2 variability in residuals

variability in response

R2
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Adjusted 

where  is the number of observations and  is the number of predictors in
the model.

R
2

= 1 − ( × )R2

adj

variability in residuals

variability in response

n − 1

n − k − 1

n k
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where  is the number of observations and  is the number of predictors in
the model.

Adjusted  doesn't increase if the new variable does not provide any new
information or is completely unrelated.
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Adjusted 

where  is the number of observations and  is the number of predictors in
the model.

Adjusted  doesn't increase if the new variable does not provide any new
information or is completely unrelated.

This makes adjusted  a preferable metric for model selection in multiple
regression models.

R
2

= 1 − ( × )R2

adj

variability in residuals

variability in response

n − 1

n − k − 1

n k

R2

R2
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glance(m_main)$r.squared

## [1] 0.6071375

glance(m_int)$r.squared

## [1] 0.6677881

glance(m_main)$adj.r.squared

## [1] 0.5933529

glance(m_int)$adj.r.squared

## [1] 0.649991

Comparing models

36

In pursuit of Occam's Razor
Occam's Razor states that among competing hypotheses that predict equally
well, the one with the fewest assumptions should be selected.

Model selection follows this principle.

We only want to add another variable to the model if the addition of that
variable brings something valuable in terms of predictive power to the model.

In other words, we prefer the simplest best model, i.e. parsimonious model.
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Multiple linear regression
Prof. Maria Tackett
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Vocabulary
Response variable: Variable whose behavior or variation you are trying to
understand.

Explanatory variables: Other variables that you want to use to explain the
variation in the response.

Predicted value: Output of the model function

The model function gives the typical value of the response variable
conditioning on the explanatory variables.

Residuals: Shows how far each case is from its predicted value

Residual = Observed value - Predicted value
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The linear model with a single predictor
We're interested in the  (population parameter for the intercept) and the 
(population parameter for the slope) in the following model:
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5



The linear model with a single predictor
We're interested in the  (population parameter for the intercept) and the 
(population parameter for the slope) in the following model:

Unfortunately, we can't get these values

So we use sample statistics to estimate them:

β0 β1

= +  xy ̂  β0 β1

= +  xy ̂  b0 b1
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Least squares regression
The regression line minimizes the sum of squared residuals.

Residuals: ,

The regression line minimizes .

Equivalently, minimizing 

= −ei yi y ̂ 
i

∑n

i=1
e2

i

[ − ( +   )∑n

i=1
yi b0 b1 xi ]2
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Data and Packages
library(tidyverse)
library(broom)

paris_paintings <- read_csv("data/paris_paintings.csv", 
               na = c("n/a", "", "NA"))

Paris Paintings Codebook

Source: Printed catalogues from 28 auction sales held in Paris 1764 - 1780

3,393 paintings, prices, descriptive details, characteristics of the auction and
buyer (over 60 variables)
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Single numerical predictor
m_ht_wd <- lm(Height_in ~ Width_in, data = paris_paintings)
tidy(m_ht_wd)

## # A tibble: 2 x 5
##   term        estimate std.error statistic  p.value
##   <chr>          <dbl>     <dbl>     <dbl>    <dbl>
## 1 (Intercept)    3.62    0.254        14.3 8.82e-45
## 2 Width_in       0.781   0.00950      82.1 0.

= 3.62 + 0.78 WidtHeightinˆ hin
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Single categorical predictor (2 levels)

## # A tibble: 2 x 5
##   term              estimate std.error statistic  p.value
##   <chr>                <dbl>     <dbl>     <dbl>    <dbl>
## 1 (Intercept)          22.7      0.328      69.1 0.      
## 2 factor(landsALL)1    -5.65     0.532     -10.6 7.97e-26

m_ht_lands <- lm(Height_in ~ factor(landsALL), data = paris_paintings)
tidy(m_ht_lands)

= 22.68 − 5.65 landsALLHeightinˆ
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Single categorical predictor (> 2 levels)
m_ht_sch <- lm(Height_in ~ school_pntg, data = paris_paintings)
tidy(m_ht_sch)

## # A tibble: 7 x 5
##   term            estimate std.error statistic p.value
##   <chr>              <dbl>     <dbl>     <dbl>   <dbl>
## 1 (Intercept)        14.        10.0     1.40  0.162  
## 2 school_pntgD/FL     2.33      10.0     0.232 0.816  
## 3 school_pntgF       10.2       10.0     1.02  0.309  
## 4 school_pntgG        1.65      11.9     0.139 0.889  
## 5 school_pntgI       10.3       10.0     1.02  0.306  
## 6 school_pntgS       30.4       11.4     2.68  0.00744
## 7 school_pntgX        2.87      10.3     0.279 0.780

= 14 + 2.33 sc + 10.2 sc +Heightinˆ hD/FL hF

1.65 sc + 10.3 sc + 30.4 sc + 2.87 schG hI hS hX
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The linear model with multiple predictors
Population model:

= +   +   + ⋯ +  y ̂  β0 β1 x1 β2 x2 βk xk
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The linear model with multiple predictors
Population model:

Sample model that we use to estimate the population model:

= +   +   + ⋯ +  y ̂  β0 β1 x1 β2 x2 βk xk

= +   +   + ⋯ +  y ̂  b0 b1 x1 b2 x2 bk xk
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Data
The data set contains prices for Porsche and Jaguar cars for sale on cars.com.

car: car make (Jaguar or Porsche)

price: price in USD

age: age of the car in years

mileage: previous miles driven
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Price, age, and make
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Price vs. age and make

Does the relationship between age and price depend on the make of the car?
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Modeling with main effects
m_main <- lm(price ~ age + car, data = sports_car_prices)

m_main %>%
  tidy() %>%
  select(term, estimate)

## # A tibble: 3 x 2
##   term        estimate
##   <chr>          <dbl>
## 1 (Intercept)   44310.
## 2 age           -2487.
## 3 carPorsche    21648.
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Jaguar

Porsche

Rate of change in price as the age of the car increases does not depend on
make of car (same slopes)

Porsches are consistently more expensive than Jaguars (different intercepts)

priceˆ = 44310 − 2487 age + 21648 × 0

= 44310 − 2487 age

priceˆ = 44310 − 2487 age + 21648 × 1

= 65958 − 2487 age
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Interpretation of main effects
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Jaguars that are new (age = 0) are predicted, on average, to have a price of
$44,309.
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Why is our linear regression model different from what we got from
geom_smooth(method = "lm")?
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What went wrong?
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What went wrong?
car is the only variable in our model that affects the intercept.
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What went wrong?
car is the only variable in our model that affects the intercept.

The model we specified assumes Jaguars and Porsches have the same slope
and different intercepts.
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What went wrong?
car is the only variable in our model that affects the intercept.

The model we specified assumes Jaguars and Porsches have the same slope
and different intercepts.

What is the most appropriate model for these data?

same slope and intercept for Jaguars and Porsches?

same slope and different intercept for Jaguars and Porsches?

different slope and different intercept for Jaguars and Porsches?

22



Interacting explanatory variables
Including an interaction effect in the model allows for different slopes, i.e.
nonparallel lines.

This means that the relationship between an explanatory variable and the
response depends on another explanatory variable.

We can accomplish this by adding an interaction variable. This is the product
of two explanatory variables.
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Price vs. age and car interacting
ggplot(data = sports_car_prices,
       mapping = aes(y = price, x = age, color = car)) +
  geom_point() + 
  geom_smooth(method = "lm", se = FALSE) +
  labs(x = "Age (years)", y = "Price (USD)", color = "Car Make")
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Modeling with interaction effects
m_int <- lm(price ~ age + car + age * car, data = sports_car_prices) 
m_int %>%
  tidy() %>%
  select(term, estimate)

## # A tibble: 4 x 2
##   term           estimate
##   <chr>             <dbl>
## 1 (Intercept)      56988.
## 2 age              -5040.
## 3 carPorsche        6387.
## 4 age:carPorsche    2969.

= 56988 − 5040 age + 6387 carPorsche + 2969 age × carPorschepriceˆ
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Interpretation of interaction effects

= 56988 − 5040 age + 6387 carPorsche + 2969 age × carPorschepriceˆ
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Interpretation of interaction effects

Plug in 0 for carPorsche to get the linear model for Jaguars.

= 56988 − 5040 age + 6387 carPorsche + 2969 age × carPorschepriceˆ

priceˆ = 56988 − 5040 age + 6387 carPorsche + 2969 age × carPorsche

= 56988 − 5040 age + 6387 × 0 + 2969 age × 0

= 56988 − 5040 age
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Interpretation of interaction effects

Plug in 0 for carPorsche to get the linear model for Jaguars.

Plug in 1 for carPorsche to get the linear model for Porsches.

= 56988 − 5040 age + 6387 carPorsche + 2969 age × carPorschepriceˆ

priceˆ = 56988 − 5040 age + 6387 carPorsche + 2969 age × carPorsche

= 56988 − 5040 age + 6387 × 0 + 2969 age × 0

= 56988 − 5040 age

priceˆ = 56988 − 5040 age + 6387 carPorsche + 2969 age × carPorsche

= 56988 − 5040 age + 6387 × 1 + 2969 age × 1

= 63375 − 2071 age
26



Interpretation of interaction effects

Jaguar

Porsche

Rate of change in price as the age of the car increases depends on the make of
the car (different slopes).

Porsches are consistently more expensive than Jaguars (different intercepts).

= 56988 − 5040 agepriceˆ

= 63375 − 2071 agepriceˆ
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= 56988 − 5040 age + 6387 carPorsche + 2969 age × carPorschepriceˆ
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Continuous by continuous interactions
Interpretation becomes trickier

Slopes conditional on values of explanatory variables
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Continuous by continuous interactions
Interpretation becomes trickier

Slopes conditional on values of explanatory variables

Third order interactions
Can you? Yes

Should you? Probably not if you want to interpret these interactions in context
of the data.
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Assessing quality of model fit

30



Assessing the quality of the fit
The strength of the fit of a linear model is commonly evaluated using .

It tells us what percentage of the variability in the response variable is
explained by the model. The remainder of the variability is unexplained.

 is sometimes called the coefficient of determination.

What does "explained variability in the response variable" mean?

R
2

R
2
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Obtaining  in R
price vs. age and make

glance(m_main)

## # A tibble: 1 x 12
##   r.squared adj.r.squared  sigma statistic  p.value    df logLik   AIC   BI
##       <dbl>         <dbl>  <dbl>     <dbl>    <dbl> <dbl>  <dbl> <dbl> <dbl
## 1     0.607         0.593 11848.      44.0 2.73e-12     2  -646. 1301. 1309
## # … with 3 more variables: deviance <dbl>, df.residual <int>, nobs <int>

glance(m_main)$r.squared

## [1] 0.6071375

R
2
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Obtaining  in R
price vs. age and make

glance(m_main)

## # A tibble: 1 x 12
##   r.squared adj.r.squared  sigma statistic  p.value    df logLik   AIC   BI
##       <dbl>         <dbl>  <dbl>     <dbl>    <dbl> <dbl>  <dbl> <dbl> <dbl
## 1     0.607         0.593 11848.      44.0 2.73e-12     2  -646. 1301. 1309
## # … with 3 more variables: deviance <dbl>, df.residual <int>, nobs <int>

glance(m_main)$r.squared

## [1] 0.6071375

About 60.7% of the variability in price of used cars can be explained by age and
make.
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glance(m_main)$r.squared #model with main effects

## [1] 0.6071375

glance(m_int)$r.squared #model with main effects + interactions

## [1] 0.6677881
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glance(m_main)$r.squared #model with main effects

## [1] 0.6071375

glance(m_int)$r.squared #model with main effects + interactions

## [1] 0.6677881

The model with interactions has a higher .
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glance(m_main)$r.squared #model with main effects

## [1] 0.6071375

glance(m_int)$r.squared #model with main effects + interactions

## [1] 0.6677881

The model with interactions has a higher .

Using  for model selection in models with multiple explanatory variables is
not a good idea as  increases when any variable is added to the model.
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 - first principles
We can write explained variation using the following ratio of sums of squares:

Why does this expression make sense?

But remember, adding any explanatory variable will always increase 

R
2

= 1 − ( )R
2

variability in residuals

variability in response

R
2
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Adjusted 

where  is the number of observations and  is the number of predictors in
the model.

R
2

= 1 − ( × )R2

adj

variability in residuals

variability in response

n − 1

n − k − 1

n k
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Adjusted 

where  is the number of observations and  is the number of predictors in
the model.

Adjusted  doesn't increase if the new variable does not provide any new
information or is completely unrelated.

R
2

= 1 − ( × )R2

adj

variability in residuals

variability in response

n − 1

n − k − 1

n k
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Adjusted 

where  is the number of observations and  is the number of predictors in
the model.

Adjusted  doesn't increase if the new variable does not provide any new
information or is completely unrelated.

This makes adjusted  a preferable metric for model selection in multiple
regression models.

R
2

= 1 − ( × )R2

adj

variability in residuals

variability in response

n − 1

n − k − 1

n k
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glance(m_main)$r.squared

## [1] 0.6071375

glance(m_int)$r.squared

## [1] 0.6677881

glance(m_main)$adj.r.squared

## [1] 0.5933529

glance(m_int)$adj.r.squared

## [1] 0.649991

Comparing models
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In pursuit of Occam's Razor
Occam's Razor states that among competing hypotheses that predict equally
well, the one with the fewest assumptions should be selected.

Model selection follows this principle.

We only want to add another variable to the model if the addition of that
variable brings something valuable in terms of predictive power to the model.

In other words, we prefer the simplest best model, i.e. parsimonious model.
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