Multiple linear regression

Prof. Maria Tackett



file:///Users/mt324/Box%20Sync/Home%20Folder%20mt324/Sync/teaching/sta199-fa20/website/static/slides/19-multiple-regression.pdf
https://sta199-fa20-003.netlify.app/slides/lec-slides/paris_codebook.html

Click for PDF of slides



file:///Users/mt324/Box%20Sync/Home%20Folder%20mt324/Sync/teaching/sta199-fa20/website/static/slides/19-multiple-regression.pdf

Review




Vocabulary




Vocabulary

= Response variable: Variable whose behavior or variation you are trying to
understand.

STA 199



Vocabulary

= Response variable: Variable whose behavior or variation you are trying to
understand.

= Explanatory variables: Other variables that you want to use to explain the
variation in the response.

STA 199



Vocabulary

= Response variable: Variable whose behavior or variation you are trying to
understand.

= Explanatory variables: Other variables that you want to use to explain the
variation in the response.

» Predicted value: Output of the model function

= The model function gives the typical value of the response variable
conditioning on the explanatory variables.

STA 199



Vocabulary

= Response variable: Variable whose behavior or variation you are trying to
understand.

Explanatory variables: Other variables that you want to use to explain the
variation in the response.

Predicted value: Output of the model function

= The model function gives the typical value of the response variable
conditioning on the explanatory variables.

Residuals: Shows how far each case is from its predicted value
= Residual = Observed value - Predicted value
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The linear model with a single predictor

= We're interested in the fy (population parameter for the intercept) and the f;
(population parameter for the slope) in the following model:

y=po+ 1 x




The linear model with a single predictor

= We're interested in the fy (population parameter for the intercept) and the f;
(population parameter for the slope) in the following model:

y=po+ 1 x
= Unfortunately, we can't get these values
= S0 we use sample statistics to estimate them:

Yy=>by+ by x
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Least squares regression

The regression line minimizes the sum of squared residuals.

= Residuals:e; = y; — y;,

2

= The regression line minimizes ),._, e:.

= Equivalently, minimizing Z?zl[yi — (bo + by Xi)]2
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Data and Packages

library(tidyverse)
library(broom)

paris_paintings <- read_csv("data/paris_paintings.csv",
na = C("n/a", llll, IINAII))

= Paris Paintings Codebook
= Source: Printed catalogues from 28 auction sales held in Paris 1764 - 1780

= 3,393 paintings, prices, descriptive details, characteristics of the auction and
buyer (over 60 variables)
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Single numerical predictor

m_ht_wd <- Um(Height_in ~ Width_in, data = paris_paintings)
tidy (m_ht_wd)

## # A tibble: 2 x 5

H4 term estimate std.error statistic p.value
## <chr> <dbl> <dbl> <dbl> <db'l>
## 1 (Intercept) 3.62 0.254 14.3 8.82e-45
## 2 Width_1n ©.781 0.00950 82.1 0.

Height;, = 3.62 + 0.78 Width;,

STA 199



Single categorical predictor (2 levels)

m_ht_lands <- lm(Height_in ~ factor(landsALL), data = paris_paintings)
tidy(m_ht_lands)

## # A tibble: 2 x 5

H4 term estimate std.error statistic p.value
## <chr> <dbl> <dbl> <dbl> <dbl>
## 1 (Intercept) 22.7 0.328 69.1 0.

## 2 factor(landsALL)1 -5.65 0.532 -10.6 7.97e-26

Height,, = 22.68 — 5.65 landsALL

STA 199



Single categorical predictor (> 2 levels)

m_ht_sch <- lm(Height_in ~ school_pntg, data = paris_paintings)
tidy(m_ht_sch)

## # A tibble: 7 x 5

H4 term estimate std.error statistic p.value
i <chr> <dbl> <dbl> <dbl> <dbl>
## 1 (Intercept) 14. 10.0 1.40 0.162
## 2 school_pntgD/FL 2.33 10.0 0.232 0.816
## 3 school_pntgF 10.2 10.0 1.02 0.309
## 4 school_pntgG 1.65 11.9 0.139 0.889
## 5 school_pntgl 10.3 10.0 1.02 0.306
## 6 school_pntgS 30.4 11.4 2.68 0.00744
## 7 school_pntgX 2.87 10.3 0.279 0.780

Height,, = 14 + 2.33 schpjpr, + 10.2 schy +
1.65 schg + 10.3 sch; 4+ 30.4 schg + 2.87 schy
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The linear model with multiple predictors
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The linear model with multiple predictors

= Population model:

y=po+p1x1+p2x2+ -+ Pr xk
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The linear model with multiple predictors

= Population model:

y=Ppo+P1x1+Prxp+ o+ Prxk
= Sample model that we use to estimate the population model:

§/=bo+b1x1+b2x2+---+bkxk
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Data

The data set contains prices for Porsche and Jaguar cars for sale on cars.com.
car:. car make (Jaguar or Porsche)

price: price in USD

age: age of the car in years

mileage: previous miles driven
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Price, age, and make
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Price vs. age and make

Does the relationship between age and price depend on the make of the car?

800004
8 60000 - Car Make
2 == Jaguar
® 40000 -
2 -e= Porsche
o

20000 -

Age (years)

STA 199

15



Modeling with main effects

m_main <- lm(price ~ age + car, data = sports_car_prices)

m_main %>%
tidy () %>%
select(term, estimate)

## # A tibble: 3 x 2

# term estimate
H# <chr> <dbl>
## 1 (Intercept) 44310.
## 2 age —2487.

## 3 carPorsche 21648.
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Modeling with main effects

m_

m_

##
##
##
##
##
##

main <- lm(price ~ age + car, data = sports_car_prices)

main %>%
tidy () %>%
select(term, estimate)

# A tibble: 3 x 2

term estimate
<chr> <dbl>
1 (Intercept) 44310.
2 age —2487.
3 carPorsche 21648.

ﬁic\e = 44310 — 2487 age + 21648 carPorsche
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price = 44310 — 2487 age + 21648 carPorsche

= Plugin O for carPorsche to get the linear model for Jaguars.
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price = 44310 — 2487 age + 21648 carPorsche

= Plugin O for carPorsche to get the linear model for Jaguars.

price = 44310 — 2487 age + 21648 x 0
= 44310 — 2487 age

= Plugin 1 for carPorsche to get the linear model for Porsches.

price = 44310 — 2487 age + 21648 x 1
= 65958 — 2487 age
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Jaguar

price = 44310 — 2487 age + 21648 X 0
= 44310 — 2487 age

Porsche

price = 44310 — 2487 age + 21648 x 1
= 65958 — 2487 age

= Rate of change in price as the age of the car increases does not depend on
make of car (same slopes)

= Porsches are consistently more expensive than Jaguars (different intercepts)
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Interpretation of main effects
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Main effects

## # A tibble: 3 x 2

H4 term estimate
## <chr> <dbl>
## 1 (Intercept) 44310.
## 2 age —-2487.

## 3 carPorsche 21648.
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Main effects

## # A tibble: 3 x 2

H4 term estimate
## <chr> <dbl>
## 1 (Intercept) 44310.
## 2 age —-2487.

## 3 carPorsche 21648.

= All else held constant, for each additional year of a car's age, the price of the
car is predicted to decrease, on average, by $2,487.
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Main effects

## # A tibble: 3 x 2

## term estimate
## <chr> <dbl>
## 1 (Intercept) 44310.
## 2 age —-2487.

## 3 carPorsche 21648.

= All else held constant, for each additional year of a car's age, the price of the
car is predicted to decrease, on average, by $2,487.

= All else held constant, Porsches are predicted, on average, to have a price that
is $21,647 greater than Jaguars.

= Jaguars that are new (age = 0) are predicted, on average, to have a price of
$44,3009.
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Why is our linear regression model different from what we got from
geom_smooth(method = "lm")?

Using geom_smooth Using our linear model

0 5 10 15 20
Age (years) Age (years)
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What went wrong?
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What went wrong?

= car is the only variable in our model that affects the intercept.
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What went wrong?

= car is the only variable in our model that affects the intercept.

= The model we specified assumes Jaguars and Porsches have the same slope
and different 1intercepts.

= What is the most appropriate model for these data?

= same slope and intercept for Jaguars and Porsches?
= same slope and different intercept for Jaguars and Porsches?

= different slope and different intercept for Jaguars and Porsches?
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Interacting explanatory variables

= |ncluding an interaction effect in the model allows for different slopes, i.e.
nonparallel lines.

= This means that the relationship between an explanatory variable and the
response depends on another explanatory variable.

= We can accomplish this by adding an interaction variable. This is the product
of two explanatory variables.
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Price vs. age and car interacting

ggplot(data = sports_car_prices,
mapping = aes(y = price, x = age, color = car)) +
geom_point() +
geom_smooth(method = "lm", se = FALSE) +
labs(x = "Age (years)", y = "Price (USD)", color = "Car Make")
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Modeling with interaction effects

m_int <- lm(price ~ age + car + age * car, data = sports_car_prices)
m_int %>%

tidy () %>%

select(term, estimate)

## # A tibble: 4 x 2

Ht term estimate
#t <chr> <dbl>
## 1 (Intercept) 56988.
## 2 age -5040.
## 3 carPorsche 6387.
## 4 age:carPorsche 2969.

m = 56988 — 5040 age + 6387 carPorsche + 2969 age X carPorsche
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Interpretation of interaction effects

m = 56988 — 5040 age + 6387 carPorsche + 2969 age X carPorsche
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Interpretation of interaction effects

m = 56988 — 5040 age + 6387 carPorsche + 2969 age X carPorsche

= Plugin O for carPorsche to get the linear model for Jaguars.

ﬁic\e = 56988 — 5040 age + 6387 carPorsche + 2969 age X carPorsche
= 56988 — 5040 age + 6387 X 0 + 2969 age X 0
= 56988 — 5040 age
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Interpretation of interaction effects

m = 56988 — 5040 age + 6387 carPorsche + 2969 age X carPorsche

= Plugin O for carPorsche to get the linear model for Jaguars.

ﬁic\e = 56988 — 5040 age + 6387 carPorsche + 2969 age X carPorsche
= 56988 — 5040 age + 6387 X 0 + 2969 age X 0
= 56988 — 5040 age

= Plugin 1 for carPorsche to get the linear model for Porsches.

p/ric\e = 56988 — 5040 age + 6387 carPorsche + 2969 age X carPorsche
= 56988 — 5040 age + 6387 X 1 + 2969 age X 1

= 63375 — 2071 age
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Interpretation of interaction effects

Jaguar
price = 56988 — 5040 age
Porsche

price = 63375 — 2071 age

m Rate of change in price as the age of the car increases depends on the make of
the car (different slopes).

= Porsches are consistently more expensive than Jaguars (different intercepts).
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Continuous by continuous interactions

= |nterpretation becomes trickier

= Slopes conditional on values of explanatory variables
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Continuous by continuous interactions

= |nterpretation becomes trickier

= Slopes conditional on values of explanatory variables

Third order interactions

= Canyou? Yes

= Should you? Probably not if you want to interpret these interactions in context
of the data.
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Assessing quality of model fit
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Assessing the quality of the fit

= The strength of the fit of a linear model is commonly evaluated using R?.

= |t tells us what percentage of the variability in the response variable is
explained by the model. The remainder of the variability is unexplained.

= R?is sometimes called the coefficient of determination.

What does "explained variability in the response variable" mean?
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Obtaining R? in R
price vs. age and make

glance(m_main)

## # A tibble: 1 x 12

## r.squared adj.r.squared sigma statistic p.value df loglLik AIC B
#t <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <db
#it 1 0.607 ©.593 11848. 44.0 2.73e-12 2 -646. 1301. 130
## # .. with 3 more variables: deviance <dbl>, df.residual <int>, nobs <int>

glance(m_main)$r.squared

## [1] 0.6071375

STA 199
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Obtaining R? in R
price vs. age and make

glance(m_main)

## # A tibble: 1 x 12

## r.squared adj.r.squared sigma statistic p.value df loglLik AIC B
#it <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <db

#it 1 0.607 ©.593 11848. 44.0 2.73e-12 2 -646. 1301. 130
## # .. with 3 more variables: deviance <dbl>, df.residual <int>, nobs <int>

glance(m_main)$r.squared

## [1] 0.6071375

About 60.7% of the variability in price of used cars can be explained by age and

make.
STA 199 32
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R’
glance(m_main)$r.squared #model with main effects
## [1] 0.6071375

glance(m_int)Sr.squared #model with main effects + interactions

## [1] 0.6677881
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R’
glance(m_main)$r.squared #model with main effects
## [1] 0.6071375

glance(m_int)Sr.squared #model with main effects + interactions

## [1] 0.6677881

= The model with interactions has a higher R?.
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R2

glance(m_main)$r.squared #model with main effects

## [1] 0.6071375

glance(m_int)Sr.squared #model with main effects + interactions
## [1] 0.6677881

= The model with interactions has a higher R?.

= Using R? for model selection in models with multiple explanatory variables is
not a good idea as R? increases when any variable is added to the model.
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R? - first principles

= We can write explained variation using the following ratio of sums of squares:

variability in residuals
RP=1- —
variability in response

Why does this expression make sense?

= But remember, adding any explanatory variable will always increase R?
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Adjusted R?

R2

adj X

variability in response n—k — 1

1 <Variability in residuals n—1 )

where n is the number of observations and k is the number of predictors in
the model.
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Adjusted R?

R2

adj X

1 variability in residuals n—1
B variability in response n—k — 1

where n is the number of observations and k is the number of predictors in
the model.

= Adjusted R? doesn't increase if the new variable does not provide any new
information or is completely unrelated.
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Adjusted R?

— X
variability in response n—k — 1

R2

1 <Variability in residuals n—1 )
adi — —

where n is the number of observations and k is the number of predictors in
the model.

= Adjusted R? doesn't increase if the new variable does not provide any new
information or is completely unrelated.

= This makes adjusted R’ a preferable metric for model selection in multiple
regression models.
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Comparing models

glance(m_main)$r.squared
## [1] 0.6071375
glance(m_int)$r.squared

## [1] 0.6677881

STA 199

glance(m_main)$adj.r.squared
## [1] 0.5933529
glance(m_int)$adj.r.squared

## [1] 0.649991
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In pursuit of Occam's Razor

= Occam's Razor states that among competing hypotheses that predict equally
well, the one with the fewest assumptions should be selected.

= Model selection follows this principle.

= We only want to add another variable to the model if the addition of that
variable brings something valuable in terms of predictive power to the model.

= |n other words, we prefer the simplest best model, i.e. parsimonious model.
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