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Vocabulary
Response variable: Variable whose behavior or variation you are trying to
understand.

Explanatory variables: Other variables that you want to use to explain the
variation in the response.

Predicted value: Output of the model function

Residuals: Shows how far each case is from its predicted value

Residual = Observed value - Predicted value
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The linear model with multiple predictors
Population model:
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The linear model with multiple predictors
Population model:

Sample model that we use to estimate the population model:
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Data and Packages
library(tidyverse)
library(broom)

Recall the file sportscars.csv contains prices for Porsche and Jaguar cars for
sale on cars.com.

car: car make (Jaguar or Porsche)

price: price in USD

age: age of the car in years

mileage: previous miles driven
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Multiple Linear Regression
m_int <- lm(price ~ age + car + age * car, 
            data = sports_car_prices) 
m_int %>%
  tidy() %>%
  select(term, estimate)

## # A tibble: 4 x 2
##   term           estimate
##   <chr>             <dbl>
## 1 (Intercept)      56988.
## 2 age              -5040.
## 3 carPorsche        6387.
## 4 age:carPorsche    2969.
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= 56988 − 5040 age + 6387 carPorsche + 2969 age × carPorschepriceˆ
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CLT-based Inference in Regression
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The linear model with multiple predictors
Population model:

Sample model that we use to estimate the population model:

Similar to other sample statistics (mean, proportion, etc) there is variability in our
estimates of the slope and intercept.
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The linear model with multiple predictors
Population model:

Sample model that we use to estimate the population model:

Similar to other sample statistics (mean, proportion, etc) there is variability in our
estimates of the slope and intercept.

Do we have convincing evidence that the true linear model has a non-zero
slope?

What is a confidence interval for the population regression coefficient?
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Mileage vs. age
We will consider a simple linear regression model predicting mileage using age.

m_age_miles <- lm(mileage ~ age, data = sports_car_prices)
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A confidence interval for 
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Confidence interval
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Confidence interval

where  is calculated using a  distribution with  degrees of freedom.
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Tidy confidence interval
tidy(m_age_miles, conf.int = TRUE, conf.level = 0.95)

## # A tibble: 2 x 7
##   term        estimate std.error statistic  p.value conf.low conf.high
##   <chr>          <dbl>     <dbl>     <dbl>    <dbl>    <dbl>     <dbl>
## 1 (Intercept)   13967.     2876.      4.86 9.40e- 6    8211.    19723.
## 2 age            3837.      403.      9.52 1.86e-13    3030.     4643.
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Calculating the 95% CI manually
A 95% confidence interval for  can be calculated as
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## [1] 58
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Calculating the 95% CI manually
A 95% confidence interval for  can be calculated as

(df <- nrow(sports_car_prices) - 2)

## [1] 58

(tstar <- qt(0.975,df))

## [1] 2.001717

(ci <- 3837 + c(-1,1) * tstar *403)

## [1] 3030.308 4643.692
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Interpretation
tidy(m_age_miles, conf.int = TRUE, conf.level = 0.95) %>% 
  filter(term == "age") %>%
  select(conf.low, conf.high)

## # A tibble: 1 x 2
##   conf.low conf.high
##      <dbl>     <dbl>
## 1    3030.     4643.

We are 95% confident that for every additional year of a car's age, the mileage is
expected to increase, on average, between about 3030 and 4643 miles.
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A hypothesis test for 
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Hypothesis testing for 
Is there convincing evidence, based on our sample data, that age is associated
with mileage?

We can set this up as a hypothesis test, with the hypotheses below.
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We can set this up as a hypothesis test, with the hypotheses below.

. The slope is 0. There is no relationship between mileage and age.

. The slope is not 0. There is a relationship between mileage and
age.
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Hypothesis testing for 
Is there convincing evidence, based on our sample data, that age is associated
with mileage?

We can set this up as a hypothesis test, with the hypotheses below.

. The slope is 0. There is no relationship between mileage and age.

. The slope is not 0. There is a relationship between mileage and
age.

We only reject  in favor of  if the data provide strong evidence that the true
slope parameter is different from zero.
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Hypothesis testing for 
tidy(m_age_miles)

## # A tibble: 2 x 5
##   term        estimate std.error statistic  p.value
##   <chr>          <dbl>     <dbl>     <dbl>    <dbl>
## 1 (Intercept)   13967.     2876.      4.86 9.40e- 6
## 2 age            3837.      403.      9.52 1.86e-13

datasciencebox.org

β1

18

Hypothesis testing for 
tidy(m_age_miles)

## # A tibble: 2 x 5
##   term        estimate std.error statistic  p.value
##   <chr>          <dbl>     <dbl>     <dbl>    <dbl>
## 1 (Intercept)   13967.     2876.      4.86 9.40e- 6
## 2 age            3837.      403.      9.52 1.86e-13

datasciencebox.org

β1

T = ∼
− 0b1

SEb1

tn−2

18

Hypothesis testing for 
tidy(m_age_miles)

## # A tibble: 2 x 5
##   term        estimate std.error statistic  p.value
##   <chr>          <dbl>     <dbl>     <dbl>    <dbl>
## 1 (Intercept)   13967.     2876.      4.86 9.40e- 6
## 2 age            3837.      403.      9.52 1.86e-13

The p-value is in the output is the p-value associated with the two-sided
hypothesis test .
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Hypothesis testing for 
tidy(m_age_miles)

## # A tibble: 2 x 5
##   term        estimate std.error statistic  p.value
##   <chr>          <dbl>     <dbl>     <dbl>    <dbl>
## 1 (Intercept)   13967.     2876.      4.86 9.40e- 6
## 2 age            3837.      403.      9.52 1.86e-13

The p-value is very small, so we reject . The data provide sufficient evidence
that the coefficient of age is not equal to 0, and there is a linear relationship
between the mileage and age of a car.
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Final Thoughts
We used a CLT-based approach to construct confidence intervals and perform
hypothesis tests.

Note that you can also use simulation-based methods to do inference using
infer. Click here for examples.
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Conditions for Inference in Regression
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Conditions
Linearity: The relationship between response and predictor(s) is linear

Independence: The residuals are independent

Normality: The residuals are nearly normally distributed

Equal Variance: The residuals have constant variance
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Conditions
Linearity: The relationship between response and predictor(s) is linear

Independence: The residuals are independent

Normality: The residuals are nearly normally distributed

Equal Variance: The residuals have constant variance

For multiple regression, the predictors shouldn't be too correlated with each
other.
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augment data with model results
.fitted: Predicted value of the response variable

.resid: Residuals

m_age_miles_aug <- augment(m_age_miles)
m_age_miles_aug %>%
  slice(1:3)

## # A tibble: 3 x 8
##   mileage   age .fitted .resid .std.resid   .hat .sigma  .cooksd
##     <dbl> <dbl>   <dbl>  <dbl>      <dbl>  <dbl>  <dbl>    <dbl>
## 1   21500     3  25477. -3977.     -0.290 0.0223 13981. 0.000959
## 2   43000     3  25477. 17523.      1.28  0.0223 13793. 0.0186  
## 3   19900     2  21640. -1740.     -0.127 0.0275 13989. 0.000229
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augment data with model results
.fitted: Predicted value of the response variable

.resid: Residuals

m_age_miles_aug <- augment(m_age_miles)
m_age_miles_aug %>%
  slice(1:3)

## # A tibble: 3 x 8
##   mileage   age .fitted .resid .std.resid   .hat .sigma  .cooksd
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## 1   21500     3  25477. -3977.     -0.290 0.0223 13981. 0.000959
## 2   43000     3  25477. 17523.      1.28  0.0223 13793. 0.0186  
## 3   19900     2  21640. -1740.     -0.127 0.0275 13989. 0.000229

We will use the fitted values and residuals to check the conditions by constructing
diagnostic plots.
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Residuals vs fitted plot
Use to check Linearity and Equal variance.

ggplot(m_age_miles_aug, mapping = aes(x = .fitted, y = .resid)) +
  geom_point() + geom_hline(yintercept = 0, lwd = 2, col = "red", lty = 2) +
  labs(x = "Predicted Mileage", y = "Residuals")
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Residuals in order of collection
Use to check Independence

ggplot(data = m_age_miles_aug, 
       aes(x = 1:nrow(sports_car_prices), 
           y = .resid)) + 
  geom_point() + geom_hline(yintercept = 0, lwd = 2, col = "red", lty = 2) +
  labs(x = "Index", y = "Residual")
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Histogram of residuals
Use to check Normality

ggplot(m_age_miles_aug, mapping = aes(x = .resid)) +
  geom_histogram(bins = 15) + labs(x = "Residuals")
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Multiple linear regression

Inference + conditions
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Vocabulary
Response variable: Variable whose behavior or variation you are trying to
understand.

Explanatory variables: Other variables that you want to use to explain the
variation in the response.

Predicted value: Output of the model function

Residuals: Shows how far each case is from its predicted value

Residual = Observed value - Predicted value
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Data and Packages
library(tidyverse)
library(broom)

Recall the file sportscars.csv contains prices for Porsche and Jaguar cars for
sale on cars.com.

car: car make (Jaguar or Porsche)

price: price in USD

age: age of the car in years

mileage: previous miles driven

datasciencebox.org 6

http://datasciencebox.org/


Multiple Linear Regression
m_int <- lm(price ~ age + car + age * car, 
            data = sports_car_prices) 
m_int %>%
  tidy() %>%
  select(term, estimate)

## # A tibble: 4 x 2
##   term           estimate
##   <chr>             <dbl>
## 1 (Intercept)      56988.
## 2 age              -5040.
## 3 carPorsche        6387.
## 4 age:carPorsche    2969.
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CLT-based Inference in Regression
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The linear model with multiple predictors
Population model:

Sample model that we use to estimate the population model:

Similar to other sample statistics (mean, proportion, etc) there is variability in our
estimates of the slope and intercept.
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The linear model with multiple predictors
Population model:

Sample model that we use to estimate the population model:

Similar to other sample statistics (mean, proportion, etc) there is variability in our
estimates of the slope and intercept.

Do we have convincing evidence that the true linear model has a non-zero
slope?

What is a confidence interval for the population regression coefficient?
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Mileage vs. age
We will consider a simple linear regression model predicting mileage using age.

m_age_miles <- lm(mileage ~ age, data = sports_car_prices)
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Confidence interval

where  is calculated using a  distribution with  degrees of freedom.
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Tidy confidence interval
tidy(m_age_miles, conf.int = TRUE, conf.level = 0.95)

## # A tibble: 2 x 7
##   term        estimate std.error statistic  p.value conf.low conf.high
##   <chr>          <dbl>     <dbl>     <dbl>    <dbl>    <dbl>     <dbl>
## 1 (Intercept)   13967.     2876.      4.86 9.40e- 6    8211.    19723.
## 2 age            3837.      403.      9.52 1.86e-13    3030.     4643.
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Calculating the 95% CI manually
A 95% confidence interval for  can be calculated as

datasciencebox.org

β1

14

http://datasciencebox.org/


Calculating the 95% CI manually
A 95% confidence interval for  can be calculated as

(df <- nrow(sports_car_prices) - 2)

## [1] 58

datasciencebox.org

β1

14

http://datasciencebox.org/


Calculating the 95% CI manually
A 95% confidence interval for  can be calculated as

(df <- nrow(sports_car_prices) - 2)

## [1] 58

(tstar <- qt(0.975,df))

## [1] 2.001717

datasciencebox.org

β1

14

http://datasciencebox.org/


Calculating the 95% CI manually
A 95% confidence interval for  can be calculated as

(df <- nrow(sports_car_prices) - 2)

## [1] 58

(tstar <- qt(0.975,df))

## [1] 2.001717
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Interpretation
tidy(m_age_miles, conf.int = TRUE, conf.level = 0.95) %>% 
  filter(term == "age") %>%
  select(conf.low, conf.high)

## # A tibble: 1 x 2
##   conf.low conf.high
##      <dbl>     <dbl>
## 1    3030.     4643.

We are 95% confident that for every additional year of a car's age, the mileage is
expected to increase, on average, between about 3030 and 4643 miles.
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Hypothesis testing for 
Is there convincing evidence, based on our sample data, that age is associated
with mileage?

We can set this up as a hypothesis test, with the hypotheses below.
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slope parameter is different from zero.
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Hypothesis testing for 
tidy(m_age_miles)

## # A tibble: 2 x 5
##   term        estimate std.error statistic  p.value
##   <chr>          <dbl>     <dbl>     <dbl>    <dbl>
## 1 (Intercept)   13967.     2876.      4.86 9.40e- 6
## 2 age            3837.      403.      9.52 1.86e-13
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## 1 (Intercept)   13967.     2876.      4.86 9.40e- 6
## 2 age            3837.      403.      9.52 1.86e-13

The p-value is very small, so we reject . The data provide sufficient evidence
that the coefficient of age is not equal to 0, and there is a linear relationship
between the mileage and age of a car.
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Final Thoughts
We used a CLT-based approach to construct confidence intervals and perform
hypothesis tests.

Note that you can also use simulation-based methods to do inference using
infer. Click here for examples.
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Conditions for Inference in Regression
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Conditions
Linearity: The relationship between response and predictor(s) is linear

Independence: The residuals are independent

Normality: The residuals are nearly normally distributed

Equal Variance: The residuals have constant variance
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other.
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augment data with model results
.fitted: Predicted value of the response variable

.resid: Residuals

m_age_miles_aug <- augment(m_age_miles)
m_age_miles_aug %>%
  slice(1:3)

## # A tibble: 3 x 8
##   mileage   age .fitted .resid .std.resid   .hat .sigma  .cooksd
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## 3   19900     2  21640. -1740.     -0.127 0.0275 13989. 0.000229

We will use the fitted values and residuals to check the conditions by constructing
diagnostic plots.
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Residuals vs fitted plot
Use to check Linearity and Equal variance.

ggplot(m_age_miles_aug, mapping = aes(x = .fitted, y = .resid)) +
  geom_point() + geom_hline(yintercept = 0, lwd = 2, col = "red", lty = 2) +
  labs(x = "Predicted Mileage", y = "Residuals")
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Residuals in order of collection
Use to check Independence

ggplot(data = m_age_miles_aug, 
       aes(x = 1:nrow(sports_car_prices), 
           y = .resid)) + 
  geom_point() + geom_hline(yintercept = 0, lwd = 2, col = "red", lty = 2) +
  labs(x = "Index", y = "Residual")
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Histogram of residuals
Use to check Normality

ggplot(m_age_miles_aug, mapping = aes(x = .resid)) +
  geom_histogram(bins = 15) + labs(x = "Residuals")
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