Multiple linear regression Inference + conditions

Click for PDF of slides

Review

Vocabulary

- Response variable: Variable whose behavior or variation you are trying to understand.
- Explanatory variables: Other variables that you want to use to explain the variation in the response.
- Predicted value: Output of the model function
- **Residuals:** Shows how far each case is from its predicted value
 - Residual = Observed value Predicted value

The linear model with multiple predictors

Population model:

$$\hat{y} = \beta_0 + \beta_1 x_1 + \beta_2 x_2 + \dots + \beta_k x_k$$

The linear model with multiple predictors

Population model:

$$\hat{y} = \beta_0 + \beta_1 x_1 + \beta_2 x_2 + \dots + \beta_k x_k$$

• Sample model that we use to estimate the population model:

$$\hat{y} = b_0 + b_1 x_1 + b_2 x_2 + \dots + b_k x_k$$

Data and Packages

library(tidyverse)
library(broom)

Recall the file **sportscars.csv** contains prices for Porsche and Jaguar cars for sale on cars.com.

car: car make (Jaguar or Porsche)

price: price in USD

age: age of the car in years

mileage: previous miles driven

Multiple Linear Regression

##	#	A tibble: 4 x 2	2
##		term	estimate
##		<chr></chr>	<dbl></dbl>
##	1	(Intercept)	56988.
##	2	age	-5040.
##	3	carPorsche	6387.
##	4	age:carPorsche	2969.

 $price = 56988 - 5040 age + 6387 carPorsche + 2969 age \times carPorsche$

CLT-based Inference in Regression

The linear model with multiple predictors

Population model:

$$\hat{y} = \beta_0 + \beta_1 x_1 + \beta_2 x_2 + \dots + \beta_k x_k$$

Sample model that we use to estimate the population model:

$$\hat{y} = b_0 + b_1 x_1 + b_2 x_2 + \dots + b_k x_k$$

Similar to other sample statistics (mean, proportion, etc) there is variability in our estimates of the slope and intercept.

The linear model with multiple predictors

Population model:

$$\hat{y} = \beta_0 + \beta_1 x_1 + \beta_2 x_2 + \dots + \beta_k x_k$$

Sample model that we use to estimate the population model:

$$\hat{y} = b_0 + b_1 x_1 + b_2 x_2 + \dots + b_k x_k$$

Similar to other sample statistics (mean, proportion, etc) there is variability in our estimates of the slope and intercept.

- Do we have convincing evidence that the true linear model has a non-zero slope?
- What is a confidence interval for the population regression coefficient?

Mileage vs. age

We will consider a simple linear regression model predicting mileage using age.

m_age_miles <- lm(mileage ~ age, data = sports_car_prices)</pre>

A confidence interval for β_1

Confidence interval

point estimate \pm *critical value* \times *SE*

Confidence interval

point estimate \pm critical value \times SE

$$b_1 \pm t_{n-2}^* \times SE_{b_1}$$

where t_{n-2}^* is calculated using a *t* distribution with n-2 degrees of freedom.

Tidy confidence interval

```
tidy(m_age_miles, conf.int = TRUE, conf.level = 0.95)
```


A 95% confidence interval for β_1 can be calculated as

A 95% confidence interval for β_1 can be calculated as

(df <- nrow(sports_car_prices) - 2)</pre>

[1] 58

A 95% confidence interval for β_1 can be calculated as

(df <- nrow(sports_car_prices) - 2)</pre>

[1] 58

(tstar <- qt(0.975,df))

[1] 2.001717

A 95% confidence interval for β_1 can be calculated as

(df <- nrow(sports_car_prices) - 2)</pre>

[1] 58

(tstar <- qt(0.975,df))

[1] 2.001717

(ci <- 3837 + c(-1,1) * tstar *403)

[1] 3030.308 4643.692

Interpretation

```
tidy(m_age_miles, conf.int = TRUE, conf.level = 0.95) %>%
filter(term == "age") %>%
select(conf.low, conf.high)
```

A tibble: 1 x 2
conf.low conf.high
<dbl> <dbl>
1 3030. 4643.

We are 95% confident that for every additional year of a car's age, the mileage is expected to increase, on average, between about 3030 and 4643 miles.

A hypothesis test for β_1

Is there convincing evidence, based on our sample data, that age is associated with mileage?

We can set this up as a hypothesis test, with the hypotheses below.

Is there convincing evidence, based on our sample data, that age is associated with mileage?

We can set this up as a hypothesis test, with the hypotheses below.

 $H_0: \beta_1 = 0$. The slope is 0. There is no relationship between mileage and age. $H_a: \beta_1 \neq 0$. The slope is not 0. There is a relationship between mileage and age.

Is there convincing evidence, based on our sample data, that age is associated with mileage?

We can set this up as a hypothesis test, with the hypotheses below.

 $H_0: \beta_1 = 0$. The slope is 0. There is no relationship between mileage and age.

 $H_a: \beta_1 \neq 0$. The slope is not 0. There is a relationship between mileage and age.

We only reject H_0 in favor of H_a if the data provide strong evidence that the true slope parameter is different from zero.

tidy(m_age_miles)

##	#	A tibble: 2	x 5			
##		term	estimate	<pre>std.error</pre>	statistic	p.value
##		<chr></chr>	<dbl></dbl>	<dbl></dbl>	<dbl></dbl>	<dbl></dbl>
##	1	(Intercept)	13967.	2876.	4.86	9.40e- 6
##	2	age	3837.	403.	9.52	1.86e-13

tidy(m_age_miles)

##	#	A tibble: 2	x 5			
##		term	estimate	<pre>std.error</pre>	statistic	p.value
##		<chr></chr>	<dbl></dbl>	<dbl></dbl>	<dbl></dbl>	<dbl></dbl>
##	1	(Intercept)	13967.	2876.	4.86	9.40e- 6
##	2	age	3837.	403.	9.52	1.86e-13

$$T = \frac{b_1 - 0}{SE_{b_1}} \sim t_{n-2}$$

tidy(m_age_miles)

##	#	A tibble: 2	x 5			
##		term	estimate	<pre>std.error</pre>	statistic	p.value
##		<chr></chr>	<dbl></dbl>	<dbl></dbl>	<dbl></dbl>	<dbl></dbl>
##	1	(Intercept)	13967.	2876.	4.86	9.40e- 6
##	2	age	3837.	403.	9.52	1.86e-13

$$T = \frac{b_1 - 0}{SE_{b_1}} \sim t_{n-2}$$

The p-value is in the output is the p-value associated with the two-sided hypothesis test H_a : $\beta_1 \neq 0$.

tidy(m_age_miles)

##	#	A tibble: 2	x 5			
##		term	estimate	<pre>std.error</pre>	statistic	p.value
##		<chr></chr>	<dbl></dbl>	<dbl></dbl>	<dbl></dbl>	<dbl></dbl>
##	1	(Intercept)	13967.	2876.	4.86	9.40e- 6
##	2	age	3837.	403.	9.52	1.86e-13

The p-value is very small, so we reject H_0 . The data provide sufficient evidence that the coefficient of age is not equal to 0, and there is a linear relationship between the mileage and age of a car.

Final Thoughts

We used a CLT-based approach to construct confidence intervals and perform hypothesis tests.

Note that you can also use simulation-based methods to do inference using **infer**. Click here for examples.

Conditions for Inference in Regression

Conditions

- Linearity: The relationship between response and predictor(s) is linear
- Independence: The residuals are independent
- Normality: The residuals are nearly normally distributed
- Equal Variance: The residuals have constant variance

Conditions

- Linearity: The relationship between response and predictor(s) is linear
- Independence: The residuals are independent
- Normality: The residuals are nearly normally distributed
- Equal Variance: The residuals have constant variance

Conditions

- Linearity: The relationship between response and predictor(s) is linear
- Independence: The residuals are independent
- Normality: The residuals are nearly normally distributed
- Equal Variance: The residuals have constant variance

For multiple regression, the predictors shouldn't be too correlated with each other.

augment data with model results

- .fitted: Predicted value of the response variable
- .resid: Residuals

```
m_age_miles_aug <- augment(m_age_miles)
m_age_miles_aug %>%
slice(1:3)
```

##	#	A tibble	e: 3 x	8					
##		mileage	age	.fitted	.resid	.std.resid	.hat	.sigma	.cooksd
##		<dbl></dbl>							
##	1	21500	3	25477.	-3977.	-0.290	0.0223	13981.	0.000959
##	2	43000	3	25477.	17523.	1.28	0.0223	13793.	0.0186
##	3	19900	2	21640.	-1740.	-0.127	0.0275	13989.	0.000229

augment data with model results

- .fitted: Predicted value of the response variable
- .resid: Residuals

```
m_age_miles_aug <- augment(m_age_miles)
m_age_miles_aug %>%
slice(1:3)
```

We will use the fitted values and residuals to check the conditions by constructing **diagnostic plots**.

Residuals vs fitted plot

Use to check Linearity and Equal variance.

```
ggplot(m_age_miles_aug, mapping = aes(x = .fitted, y = .resid)) +
geom_point() + geom_hline(yintercept = 0, lwd = 2, col = "red", lty = 2) +
labs(x = "Predicted Mileage", y = "Residuals")
```


Residuals in order of collection

Use to check Independence

Histogram of residuals

Use to check Normality

```
ggplot(m_age_miles_aug, mapping = aes(x = .resid)) +
geom_histogram(bins = 15) + labs(x = "Residuals")
```


STA 199