

Logistic Regression

Prof. Maria Tackett

class: middle center

Click for PDF of slides

Introduction

Multiple regression allows us to relate a numerical response variable to one or more numerical or categorical predictors.

We can use multiple regression models to understand relationships, assess differences, and make predictions.

But what about a situation where the response of interest is categorical and binary?

Introduction

Multiple regression allows us to relate a numerical response variable to one or more numerical or categorical predictors.

We can use multiple regression models to understand relationships, assess differences, and make predictions.

But what about a situation where the response of interest is categorical and binary?

- spam or not spam
- malignant or benign tumor
- survived or died
- admitted or not admitted

Titanic

On April 15, 1912 the famous ocean liner *Titanic* sank in the North Atlantic after striking an iceberg on its maiden voyage. The dataset **titanic.csv** contains the survival status and other attributes of individuals on the titanic.

- **survived**: survival status (1 = survived, 0 = died)
- **pclass**: passenger class (1 = 1st, 2 = 2nd, 3 = 3rd)
- **name**: name of individual
- **sex**: sex (male or female)
- **age**: age in years
- **fare**: passenger fare in British pounds

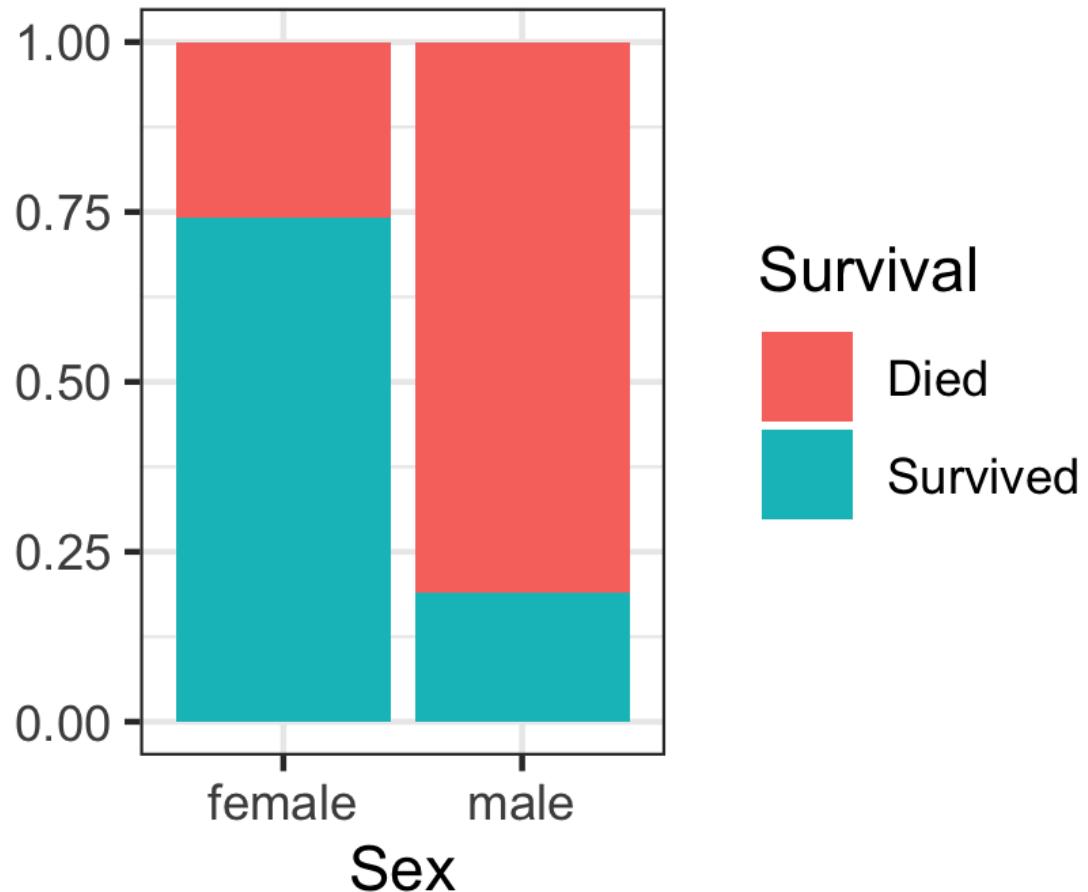
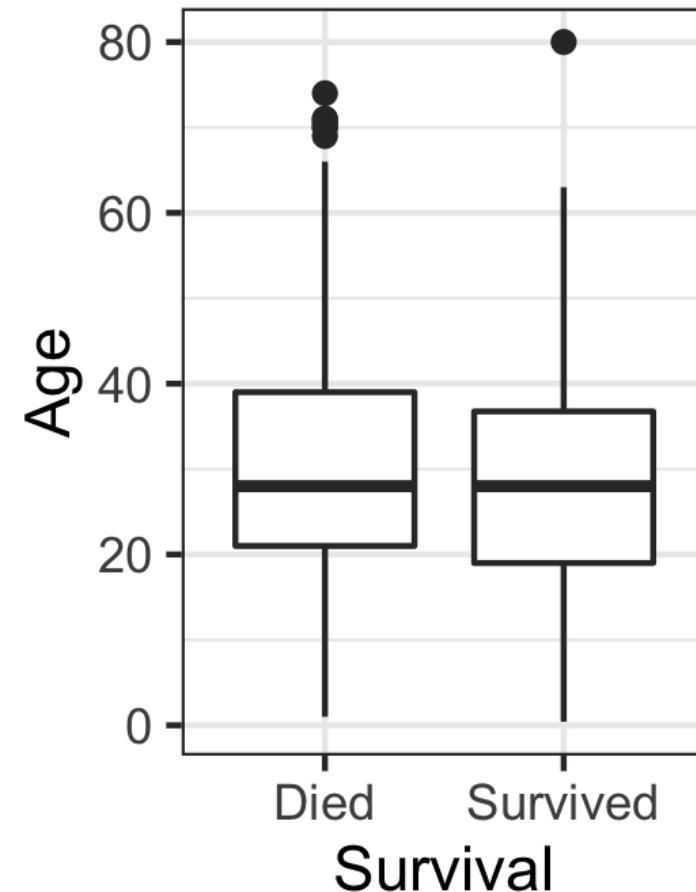
We are interested in investigating the variables that contribute to passenger survival. Do women and children really come first?

Data and Packages

```
library(tidyverse)  
library(broom)
```

```
glimpse(titanic)
```


Exploratory Data Analysis



The linear model with multiple predictors

- Population model:

$$y = \beta_0 + \beta_1 x_1 + \beta_2 x_2 + \cdots + \beta_k x_k + \epsilon$$

The linear model with multiple predictors

- Population model:

$$y = \beta_0 + \beta_1 x_1 + \beta_2 x_2 + \cdots + \beta_k x_k + \epsilon$$

- Sample model that we use to estimate the population model:

$$\hat{y} = b_0 + b_1 x_1 + b_2 x_2 + \cdots + b_k x_k$$

The linear model with multiple predictors

- Population model:

$$y = \beta_0 + \beta_1 x_1 + \beta_2 x_2 + \cdots + \beta_k x_k + \epsilon$$

- Sample model that we use to estimate the population model:

$$\hat{y} = b_0 + b_1 x_1 + b_2 x_2 + \cdots + b_k x_k$$

Denote by p the probability of survival and consider the model below.

$$p = \beta_0 + \beta_1 x_1 + \beta_2 x_2 + \cdots + \beta_k x_k + \epsilon$$

The linear model with multiple predictors

- Population model:

$$y = \beta_0 + \beta_1 x_1 + \beta_2 x_2 + \cdots + \beta_k x_k + \epsilon$$

- Sample model that we use to estimate the population model:

$$\hat{y} = b_0 + b_1 x_1 + b_2 x_2 + \cdots + b_k x_k$$

Denote by p the probability of survival and consider the model below.

$$p = \beta_0 + \beta_1 x_1 + \beta_2 x_2 + \cdots + \beta_k x_k + \epsilon$$

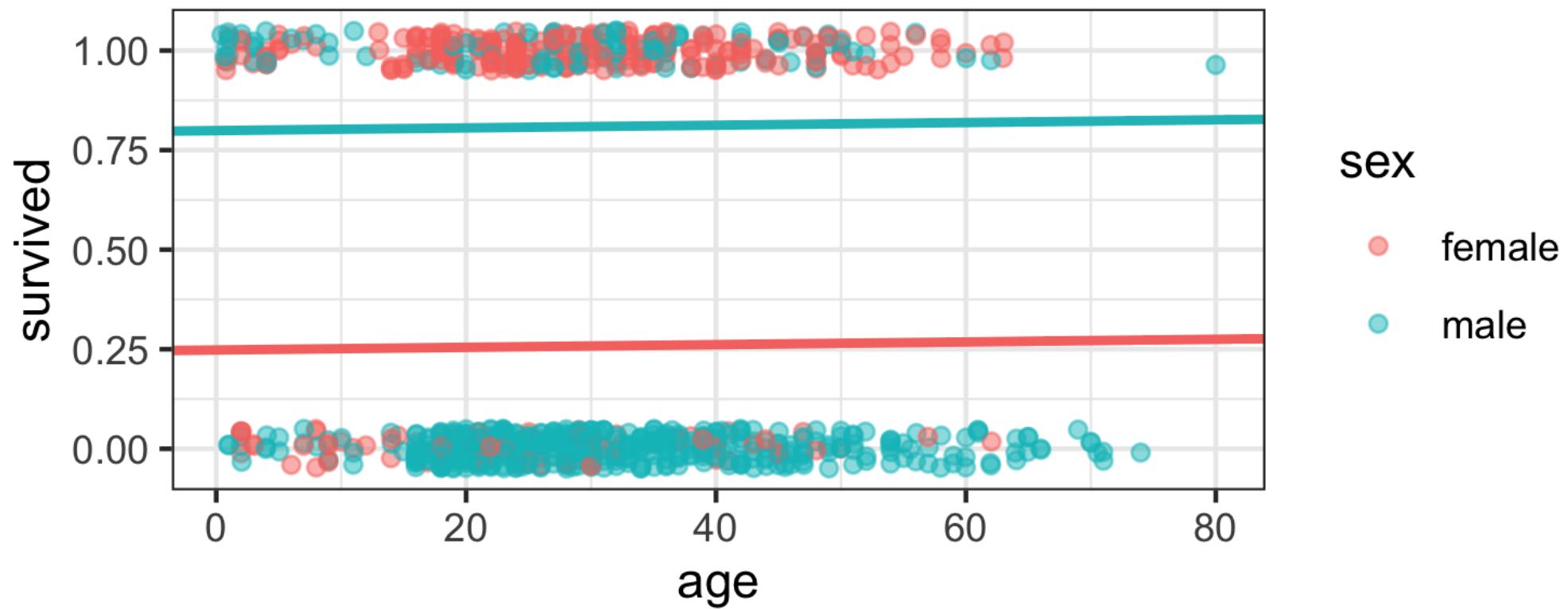
Can you see any problems with this approach?

Linear Regression?

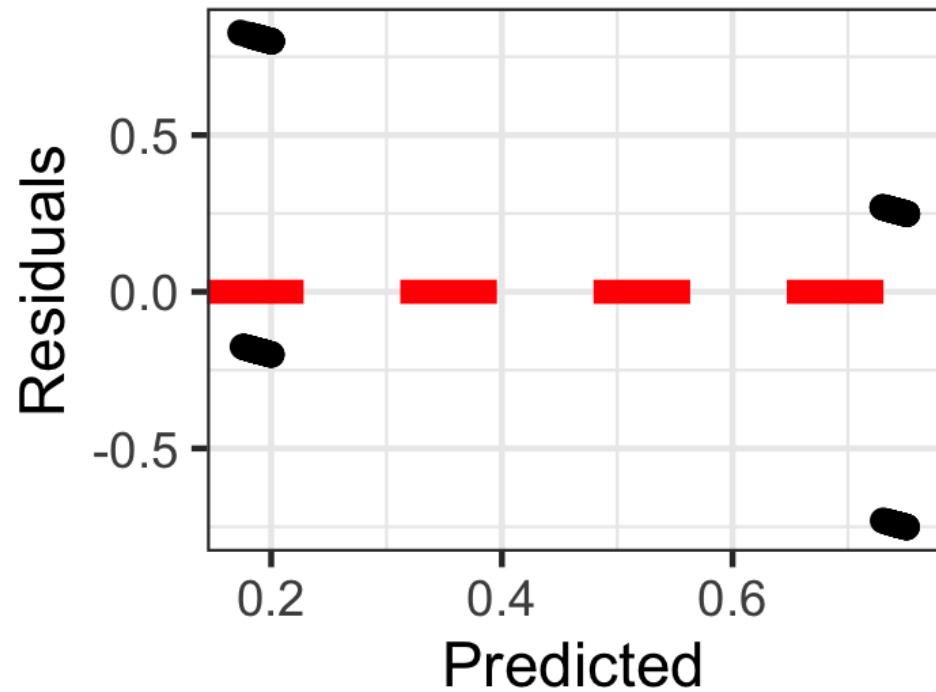
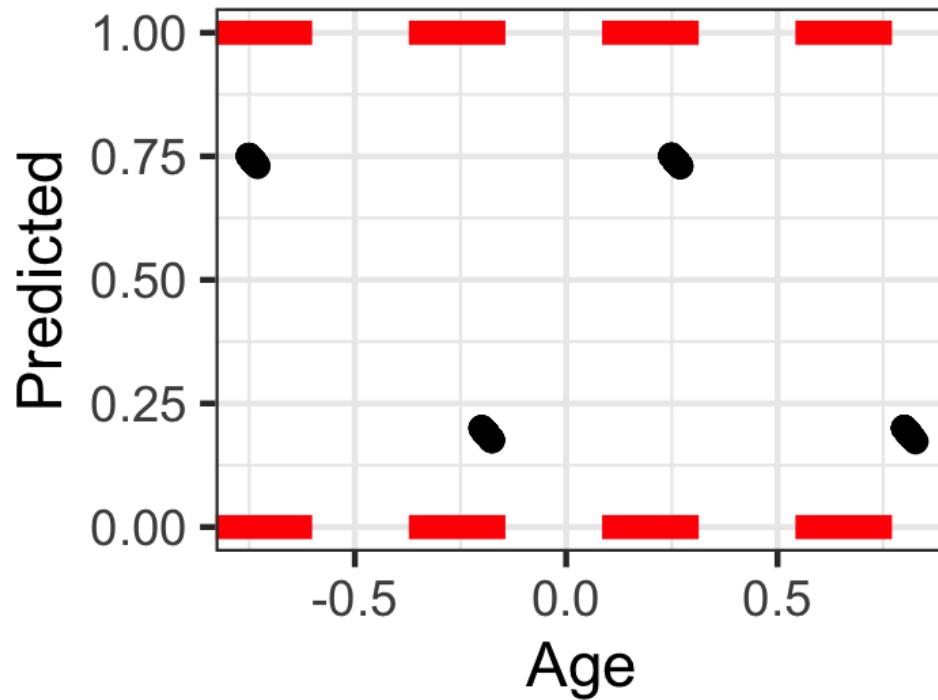
```
lm_survival <- lm(survived ~ age + sex, data = titanic)
tidy(lm_survival)
```

```
## # A tibble: 3 x 5
##   term      estimate std.error statistic p.value
##   <chr>      <dbl>     <dbl>     <dbl>     <dbl>
## 1 (Intercept)  0.752     0.0356    21.1     2.88e-80
## 2 age        -0.000343  0.000979  -0.350    7.26e- 1
## 3 sexmale     -0.551     0.0289    -19.1    3.50e-68
```

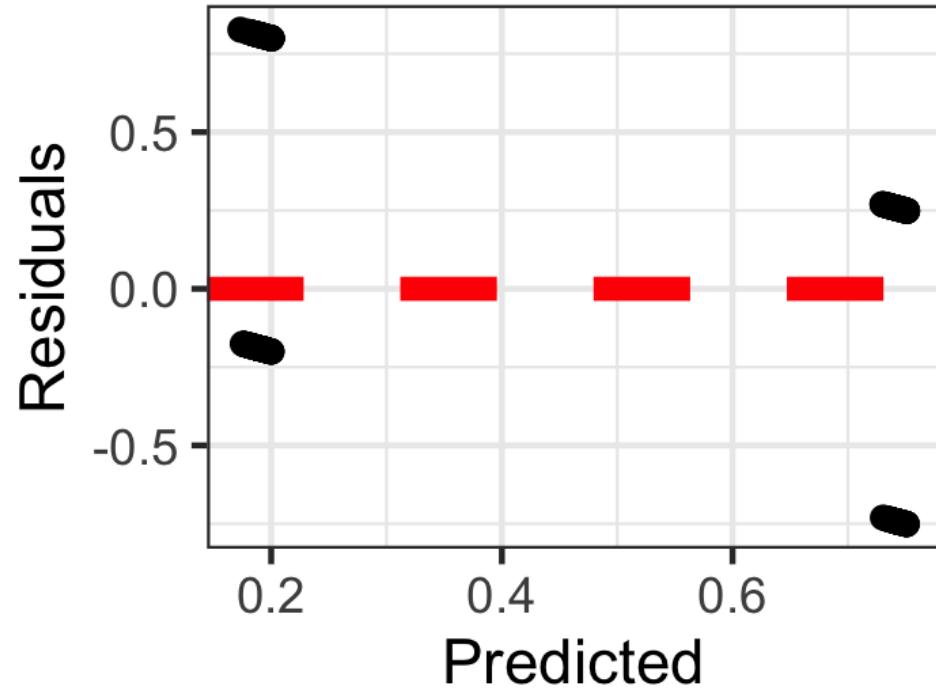
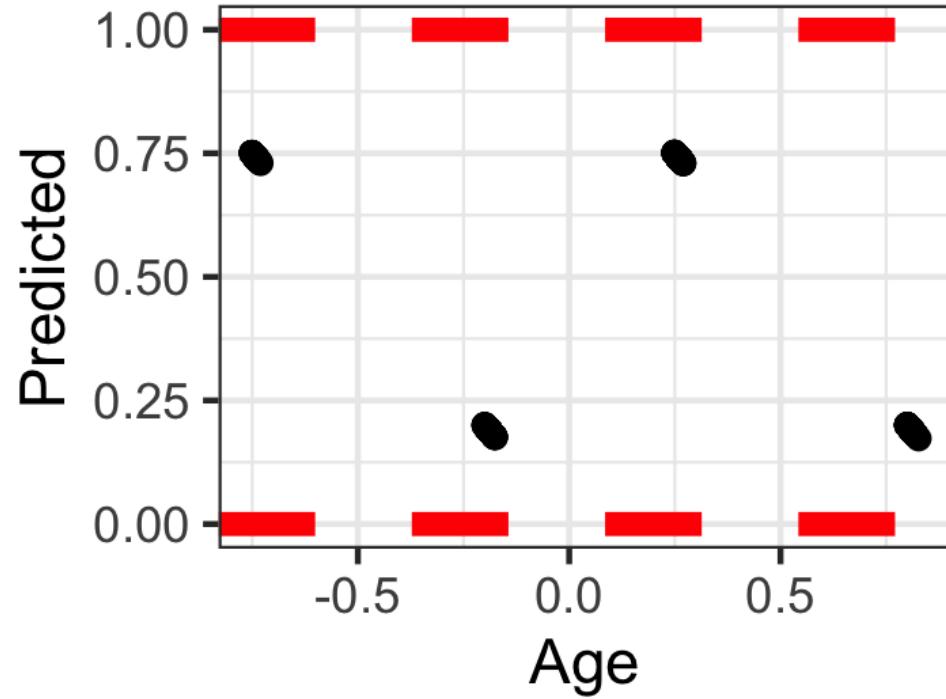
Visualizing the Model



Diagnostics



Diagnostics



This isn't helpful! We need to develop a new tool.

Preliminaries

- Denote by p the probability of some event
- The **odds** the event occurs is $\frac{p}{1-p}$

Preliminaries

- Denote by p the probability of some event
- The **odds** the event occurs is $\frac{p}{1-p}$

Odds are sometimes expressed as $X : Y$ and read X to Y .

It is the ratio of successes to failures, where values larger than 1 favor a success and values smaller than 1 favor a failure.

Preliminaries

- Denote by p the probability of some event
- The **odds** the event occurs is $\frac{p}{1-p}$

Odds are sometimes expressed as $X : Y$ and read X to Y .

It is the ratio of successes to failures, where values larger than 1 favor a success and values smaller than 1 favor a failure.

If $P(A) = 1/2$, the odds of A are $\frac{1/2}{1/2} = 1$

Preliminaries

- Denote by p the probability of some event
- The **odds** the event occurs is $\frac{p}{1-p}$

Odds are sometimes expressed as $X : Y$ and read X to Y .

It is the ratio of successes to failures, where values larger than 1 favor a success and values smaller than 1 favor a failure.

If $P(A) = 1/2$, the odds of A are $\frac{1/2}{1/2} = 1$

If $P(B) = 1/3$, the odds of B are $\frac{1/3}{2/3} = 0.5$

An **odds ratio** is a ratio of odds.

Preliminaries

- Taking the natural log of the odds yields the **logit** of p

$$\text{logit}(p) = \log \left(\frac{p}{1 - p} \right)$$

Preliminaries

- Taking the natural log of the odds yields the **logit** of p

$$\text{logit}(p) = \log \left(\frac{p}{1 - p} \right)$$

The logit takes a value of p between 0 and 1 and outputs a value between $-\infty$ and ∞ .

Preliminaries

- Taking the natural log of the odds yields the **logit** of p

$$\text{logit}(p) = \log \left(\frac{p}{1 - p} \right)$$

The logit takes a value of p between 0 and 1 and outputs a value between $-\infty$ and ∞ .

The **inverse logit (logistic)** takes a value between $-\infty$ and ∞ and outputs a value between 0 and 1.

$$\text{inverse logit}(x) = \frac{e^x}{1 + e^x}$$

Logistic Regression Model

$$\log \left(\frac{p}{1-p} \right) = \beta_0 + \beta_1 x_1 + \beta_2 x_2 + \dots + \beta_k x_k$$

Logistic Regression Model

$$\log \left(\frac{p}{1-p} \right) = \beta_0 + \beta_1 x_1 + \beta_2 x_2 + \dots + \beta_k x_k$$

Use the inverse logit to find the expression for p .

$$p = \frac{e^{\beta_0 + \beta_1 x_1 + \beta_2 x_2 + \dots + \beta_k x_k}}{1 + e^{\beta_0 + \beta_1 x_1 + \beta_2 x_2 + \dots + \beta_k x_k}}$$

We can use the logistic regression model to obtain predicted probabilities of success for a binary response variable.

Logistic Regression Model

We handle fitting the model via computer using the **glm** function.

```
logit_mod <- glm(survived ~ sex + age, data = titanic,  
                   family = "binomial")  
tidy(logit_mod)
```

```
## # A tibble: 3 x 5  
##   term      estimate std.error statistic p.value  
##   <chr>      <dbl>     <dbl>     <dbl>     <dbl>  
## 1 (Intercept)  1.11      0.208      5.34  9.05e- 8  
## 2 sexmale     -2.50      0.168     -14.9   3.24e-50  
## 3 age        -0.00206    0.00586     -0.351 7.25e- 1
```

Logistic Regression Model

And use **augment** to find predicted log-odds.

```
pred_log_odds <- augment(logit_mod)
```


The Estimated Logistic Regression Model

```
tidy(logit_mod)
```

```
## # A tibble: 3 x 5
##   term      estimate std.error statistic p.value
##   <chr>      <dbl>     <dbl>     <dbl>     <dbl>
## 1 (Intercept) 1.11      0.208      5.34  9.05e- 8
## 2 sexmale     -2.50      0.168     -14.9   3.24e-50
## 3 age        -0.00206    0.00586    -0.351  7.25e- 1
```

$$\log \left(\frac{\hat{p}}{1 - \hat{p}} \right) = 1.11 - 2.50 \text{sex} - 0.00206 \text{age}$$

$$\hat{p} = \frac{e^{1.11 - 2.50 \text{sex} - 0.00206 \text{age}}}{1 + e^{1.11 - 2.50 \text{sex} - 0.00206 \text{age}}}$$

Interpreting coefficients

$$\log\left(\frac{\hat{p}}{1 - \hat{p}}\right) = 1.11 - 2.50 \text{ } sex - 0.00206 \text{ } age$$

Interpreting coefficients

$$\log\left(\frac{\hat{p}}{1 - \hat{p}}\right) = 1.11 - 2.50 \text{ } sex - 0.00206 \text{ } age$$

Holding sex constant, for every additional year of age, we expect the log-odds of survival to decrease by approximately 0.002.

Interpreting coefficients

$$\log\left(\frac{\hat{p}}{1 - \hat{p}}\right) = 1.11 - 2.50 \text{ } sex - 0.00206 \text{ } age$$

Holding sex constant, for every additional year of age, we expect the log-odds of survival to decrease by approximately 0.002.

Holding age constant, we expect males to have a log-odds of survival that is 2.50 less than females.

Interpreting coefficients

$$\frac{\hat{p}}{1 - \hat{p}} = e^{1.11 - 2.50 \text{ sex} - 0.00206 \text{ age}}$$

Interpreting coefficients

$$\frac{\hat{p}}{1 - \hat{p}} = e^{1.11 - 2.50 \text{ sex} - 0.00206 \text{ age}}$$

Holding sex constant, for every one year increase in age, the odds of survival are expected to multiply by a factor of $e^{-0.00206} = 0.998$.

Interpreting coefficients

$$\frac{\hat{p}}{1 - \hat{p}} = e^{1.11 - 2.50 \text{ sex} - 0.00206 \text{ age}}$$

Holding sex constant, for every one year increase in age, the odds of survival are expected to multiply by a factor of $e^{-0.00206} = 0.998$.

Holding age constant, the odds of survival for males are $e^{-2.50} = 0.082$ times the odds of survival for females.

Classification

- Logistic regression allows us to obtain predicted probabilities of success for a binary variable.
- By imposing a threshold (for example if the probability is greater than 0.50) we can create a classifier.

Classification

- Logistic regression allows us to obtain predicted probabilities of success for a binary variable.
- By imposing a threshold (for example if the probability is greater than 0.50) we can create a classifier.

```
## # A tibble: 2 x 3
##   survived Died Survived
##   <dbl> <int>    <int>
## 1 0      464      81
## 2 1      109     233
```

Strengths and Weaknesses

Weaknesses

- Logistic regression has assumptions: independence and linearity in the log-odds (some other methods require fewer assumptions)
- If the predictors are correlated, coefficient estimates may be unreliable

Strengths and Weaknesses

Weaknesses

- Logistic regression has assumptions: independence and linearity in the log-odds (some other methods require fewer assumptions)
- If the predictors are correlated, coefficient estimates may be unreliable

Strengths

- Straightforward interpretation of coefficients
- Handles numerical and categorical predictors
- Can quantify uncertainty around a prediction
- Can extend to more than 2 categories (multinomial regression)