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Introduction
Multiple regression allows us to relate a numerical response variable to one or
more numerical or categorical predictors.

We can use multiple regression models to understand relationships, assess
differences, and make predictions.

But what about a situation where the response of interest is categorical and
binary?
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Multiple regression allows us to relate a numerical response variable to one or
more numerical or categorical predictors.

We can use multiple regression models to understand relationships, assess
differences, and make predictions.

But what about a situation where the response of interest is categorical and
binary?

spam or not spam

malignant or benign tumor

survived or died

admitted or or not admitted
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Titanic
On April 15, 1912 the famous ocean liner Titanic sank in the North Atlantic after
striking an iceberg on its maiden voyage. The dataset titanic.csv contains the
survival status and other attributes of individuals on the titanic.

survived: survival status (1 = survived, 0 = died)

pclass: passenger class (1 = 1st, 2 = 2nd, 3 = 3rd)

name: name of individual

sex: sex (male or female)

age: age in years

fare: passenger fare in British pounds

We are interested in investigating the variables that contribute to passenger
survival. Do women and children really come first?
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Data and Packages
library(tidyverse)
library(broom)

glimpse(titanic)

## Rows: 887
## Columns: 7
## $ pclass   <dbl> 3, 1, 3, 1, 3, 3, 1, 3, 3, 2, 3, 1, 3, 3, 3, 2, 3, 2, 3, 3
## $ name     <chr> "Mr. Owen Harris Braund", "Mrs. John Bradley (Florence Bri
## $ sex      <chr> "male", "female", "female", "female", "male", "male", "mal
## $ age      <dbl> 22, 38, 26, 35, 35, 27, 54, 2, 27, 14, 4, 58, 20, 39, 14, 
## $ fare     <dbl> 7.2500, 71.2833, 7.9250, 53.1000, 8.0500, 8.4583, 51.8625
## $ died     <dbl> 1, 0, 0, 0, 1, 1, 1, 1, 0, 0, 0, 0, 1, 1, 1, 0, 1, 0, 1, 0
## $ survived <dbl> 0, 1, 1, 1, 0, 0, 0, 0, 1, 1, 1, 1, 0, 0, 0, 1, 0, 1, 0, 1
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Exploratory Data Analysis
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The linear model with multiple predictors
Population model:

y = +   +   + ⋯ +   + ϵβ0 β1 x1 β2 x2 βk xk
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The linear model with multiple predictors
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Sample model that we use to estimate the population model:
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= +   +   + ⋯ +  y ̂  b0 b1 x1 b2 x2 bk xk
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The linear model with multiple predictors
Population model:

Sample model that we use to estimate the population model:

Denote by  the probability of survival and consider the model below.

Can you see any problems with this approach?
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Linear Regression?
lm_survival <- lm(survived ~ age + sex, data = titanic)
tidy(lm_survival)

## # A tibble: 3 x 5
##   term         estimate std.error statistic  p.value
##   <chr>           <dbl>     <dbl>     <dbl>    <dbl>
## 1 (Intercept)  0.752     0.0356      21.1   2.88e-80
## 2 age         -0.000343  0.000979    -0.350 7.26e- 1
## 3 sexmale     -0.551     0.0289     -19.1   3.50e-68
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Visualizing the Model
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Diagnostics
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Diagnostics

This isn't helpful! We need to develop a new tool.
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Preliminaries
Denote by  the probability of some event

The odds the event occurs is 

p
p

1−p
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Preliminaries
Taking the natural log of the odds yields the logit of p

logit(p) = log( )
p

1 − p
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Logistic Regression Model

log( ) = + + + … +
p

1 − p
β0 β1x1 β2x2 βkxk
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Logistic Regression Model

Use the inverse logit to find the expression for .

We can use the logistic regression model to obtain predicted probabilities of
success for a binary response variable.

log( ) = + + + … +
p

1 − p
β0 β1x1 β2x2 βkxk

p

p =
e + + +…+β0 β1x1 β2x2 βkxk

1 + e + + +…+β
0

β
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k
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Logistic Regression Model
We handle fitting the model via computer using the glm function.

logit_mod <- glm(survived ~ sex + age, data = titanic, 
                 family = "binomial")
tidy(logit_mod)

## # A tibble: 3 x 5
##   term        estimate std.error statistic  p.value
##   <chr>          <dbl>     <dbl>     <dbl>    <dbl>
## 1 (Intercept)  1.11      0.208       5.34  9.05e- 8
## 2 sexmale     -2.50      0.168     -14.9   3.24e-50
## 3 age         -0.00206   0.00586    -0.351 7.25e- 1
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Logistic Regression Model
And use augment to find predicted log-odds.

pred_log_odds <- augment(logit_mod)
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The Estimated Logistic Regression Model
tidy(logit_mod)

## # A tibble: 3 x 5
##   term        estimate std.error statistic  p.value
##   <chr>          <dbl>     <dbl>     <dbl>    <dbl>
## 1 (Intercept)  1.11      0.208       5.34  9.05e- 8
## 2 sexmale     -2.50      0.168     -14.9   3.24e-50
## 3 age         -0.00206   0.00586    -0.351 7.25e- 1

log( ) = 1.11 − 2.50 sex − 0.00206 age
p̂ 

1 − p̂ 

=p̂ 
e1.11−2.50 sex−0.00206 age

1 + e1.11−2.50 sex−0.00206 age
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Interpreting coefficients
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Interpreting coefficients

Holding sex constant, for every additional year of age, we expect the log-odds of
survival to decrease by approximately 0.002.
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Holding sex constant, for every additional year of age, we expect the log-odds of
survival to decrease by approximately 0.002.

Holding age constant, we expect males to have a log-odds of survival that is 2.50
less than females.
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Interpreting coefficients

Holding sex constant, for every one year increase in age, the odds of survival are
expected to multiply by a factor of .
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Interpreting coefficients

Holding sex constant, for every one year increase in age, the odds of survival are
expected to multiply by a factor of .

Holding age constant, the odds of survival for males are  times the
odds of survival for females.

=
p̂ 

1 − p̂ 
e1.11−2.50 sex−0.00206 age

= 0.998e−0.00206

= 0.082e−2.50
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Classification
Logistic regression allows us to obtain predicted probabilities of success for a
binary variable.

By imposing a threshold (for example if the probability is greater than )
we can create a classifier.

0.50
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Classification
Logistic regression allows us to obtain predicted probabilities of success for a
binary variable.

By imposing a threshold (for example if the probability is greater than )
we can create a classifier.

## # A tibble: 2 x 3
##   survived  Died Survived
##      <dbl> <int>    <int>
## 1        0   464       81
## 2        1   109      233

0.50

19

Strengths and Weaknesses
Weaknesses

Logistic regression has assumptions: independence and linearity in the log-
odds (some other methods require fewer assumptions)

If the predictors are correlated, coefficient estimates may be unreliable
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Logistic regression has assumptions: independence and linearity in the log-
odds (some other methods require fewer assumptions)

If the predictors are correlated, coefficient estimates may be unreliable

Strengths

Straightforward interpretation of coefficients

Handles numerical and categorical predictors

Can quantify uncertainty around a prediction

Can extend to more than 2 categories (multinomial regression)
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Logistic Regression
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Titanic
On April 15, 1912 the famous ocean liner Titanic sank in the North Atlantic after
striking an iceberg on its maiden voyage. The dataset titanic.csv contains the
survival status and other attributes of individuals on the titanic.

survived: survival status (1 = survived, 0 = died)
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Linear Regression?
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Logistic Regression Model
We handle fitting the model via computer using the glm function.

logit_mod <- glm(survived ~ sex + age, data = titanic, 
                 family = "binomial")
tidy(logit_mod)

## # A tibble: 3 x 5
##   term        estimate std.error statistic  p.value
##   <chr>          <dbl>     <dbl>     <dbl>    <dbl>
## 1 (Intercept)  1.11      0.208       5.34  9.05e- 8
## 2 sexmale     -2.50      0.168     -14.9   3.24e-50
## 3 age         -0.00206   0.00586    -0.351 7.25e- 1
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Logistic Regression Model
And use augment to find predicted log-odds.

pred_log_odds <- augment(logit_mod)
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The Estimated Logistic Regression Model
tidy(logit_mod)
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## 3 age         -0.00206   0.00586    -0.351 7.25e- 1
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Classification
Logistic regression allows us to obtain predicted probabilities of success for a
binary variable.

By imposing a threshold (for example if the probability is greater than )
we can create a classifier.
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Strengths and Weaknesses
Weaknesses

Logistic regression has assumptions: independence and linearity in the log-
odds (some other methods require fewer assumptions)

If the predictors are correlated, coefficient estimates may be unreliable
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